Download a course in ordinary differential equations in pdf or read a course in ordinary differential equations in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get a course in ordinary differential equations in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



A Course In Ordinary Differential Equations Second Edition

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 1466509104
Size: 11.41 MB
Format: PDF
View: 1210
Download and Read
A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

A Course In Ordinary Differential Equations

Author: Bindhyachal Rai
Publisher: CRC Press
ISBN: 9780849309922
Size: 36.55 MB
Format: PDF, Mobi
View: 3324
Download and Read
Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.

A Course In Differential Equations With Boundary Value Problems Second Edition

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 1498736068
Size: 16.14 MB
Format: PDF
View: 7593
Download and Read
A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author’s successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student’s field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB®,?Mathematica®, and MapleTM. The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. ? Features MATLAB®,?Mathematica®, and MapleTM are incorporated at the end of each chapter. All three software packages have parallel code and exercises; There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages. Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book

Second Course In Ordinary Differential Equations For Scientists And Engineers

Author: Mayer Humi
Publisher: Springer Science & Business Media
ISBN: 1461238323
Size: 70.69 MB
Format: PDF, Docs
View: 7757
Download and Read
The world abounds with introductory texts on ordinary differential equations and rightly so in view of the large number of students taking a course in this subject. However, for some time now there is a growing need for a junior-senior level book on the more advanced topics of differential equations. In fact the number of engineering and science students requiring a second course in these topics has been increasing. This book is an outgrowth of such courses taught by us in the last ten years at Worcester Polytechnic Institute. The book attempts to blend mathematical theory with nontrivial applications from varipus disciplines. It does not contain lengthy proofs of mathemati~al theorems as this would be inappropriate for its intended audience. Nevertheless, in each case we motivated these theorems and their practical use through examples and in some cases an "intuitive proof" is included. In view of this approach the book could be used also by aspiring mathematicians who wish to obtain an overview of the more advanced aspects of differential equations and an insight into some of its applications. We have included a wide range of topics in order to afford the instructor the flexibility in designing such a course according to the needs of the students. Therefore, this book contains more than enough material for a one semester course.

A Short Course In Ordinary Differential Equations

Author: Qingkai Kong
Publisher: Springer
ISBN: 3319112392
Size: 45.69 MB
Format: PDF, Docs
View: 4826
Download and Read
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.

A First Course In Ordinary Differential Equations

Author: Martin Hermann
Publisher: Springer Science & Business
ISBN: 8132218353
Size: 79.11 MB
Format: PDF, Mobi
View: 2100
Download and Read
This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.