Download a course in ordinary differential equations in pdf or read a course in ordinary differential equations in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get a course in ordinary differential equations in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

A Course In Ordinary Differential Equations

Author: Stephen A. Wirkus
Publisher: CRC Press
ISBN: 1420010417
Size: 29.95 MB
Format: PDF, Mobi
View: 844
Download and Read
The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB®, Mathematica®, and MapleTM, A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of modern topics that are not commonly found in a traditional sophomore-level text. For example, Chapter 2 covers direction fields, phase line techniques, and the Runge-Kutta method; another chapter discusses linear algebraic topics, such as transformations and eigenvalues. Chapter 6 considers linear and nonlinear systems of equations from a dynamical systems viewpoint and uses the linear algebra insights from the previous chapter; it also includes modern applications like epidemiological models. With sufficient problems at the end of each chapter, even the pure math major will be fully challenged. Although traditional in its coverage of basic topics of ODEs, A Course in Ordinary Differential Equations is one of the first texts to provide relevant computer code and instruction in MATLAB, Mathematica, and Maple that will prepare students for further study in their fields.

A Course In Ordinary Differential Equations

Author: Bindhyachal Rai
Publisher: CRC Press
ISBN: 9780849309922
Size: 66.22 MB
Format: PDF, ePub, Mobi
View: 5647
Download and Read
Designed as a text for both under and postgraduate students of mathematics and engineering, A Course in Ordinary Differential Equations deals with theory and methods of solutions as well as applications of ordinary differential equations. The treatment is lucid and gives a detailed account of Laplace transforms and their applications, Legendre and Bessel functions, and covers all the important numerical methods for differential equations.

A Course In Ordinary Differential Equations Second Edition

Author: Stephen A. Wirkus
Publisher: Chapman and Hall/CRC
ISBN: 9781466509085
Size: 41.42 MB
Format: PDF
View: 6938
Download and Read
A Course in Ordinary Differential Equations, Second Edition teaches students how to use analytical and numerical solution methods in typical engineering, physics, and mathematics applications. Lauded for its extensive computer code and student-friendly approach, the first edition of this popular textbook was the first on ordinary differential equations (ODEs) to include instructions on using MATLAB®, Mathematica®, and MapleTM. This second edition reflects the feedback of students and professors who used the first edition in the classroom. New to the Second Edition Moves the computer codes to Computer Labs at the end of each chapter, which gives professors flexibility in using the technology Covers linear systems in their entirety before addressing applications to nonlinear systems Incorporates the latest versions of MATLAB, Maple, and Mathematica Includes new sections on complex variables, the exponential response formula for solving nonhomogeneous equations, forced vibrations, and nondimensionalization Highlights new applications and modeling in many fields Presents exercise sets that progress in difficulty Contains color graphs to help students better understand crucial concepts in ODEs Provides updated and expanded projects in each chapter Suitable for a first undergraduate course, the book includes all the basics necessary to prepare students for their future studies in mathematics, engineering, and the sciences. It presents the syntax from MATLAB, Maple, and Mathematica to give students a better grasp of the theory and gain more insight into real-world problems. Along with covering traditional topics, the text describes a number of modern topics, such as direction fields, phase lines, the Runge-Kutta method, and epidemiological and ecological models. It also explains concepts from linear algebra so that students acquire a thorough understanding of differential equations.

Second Course In Ordinary Differential Equations For Scientists And Engineers

Author: Mayer Humi
Publisher: Springer Science & Business Media
ISBN: 1461238323
Size: 58.91 MB
Format: PDF, Docs
View: 816
Download and Read
The world abounds with introductory texts on ordinary differential equations and rightly so in view of the large number of students taking a course in this subject. However, for some time now there is a growing need for a junior-senior level book on the more advanced topics of differential equations. In fact the number of engineering and science students requiring a second course in these topics has been increasing. This book is an outgrowth of such courses taught by us in the last ten years at Worcester Polytechnic Institute. The book attempts to blend mathematical theory with nontrivial applications from varipus disciplines. It does not contain lengthy proofs of mathemati~al theorems as this would be inappropriate for its intended audience. Nevertheless, in each case we motivated these theorems and their practical use through examples and in some cases an "intuitive proof" is included. In view of this approach the book could be used also by aspiring mathematicians who wish to obtain an overview of the more advanced aspects of differential equations and an insight into some of its applications. We have included a wide range of topics in order to afford the instructor the flexibility in designing such a course according to the needs of the students. Therefore, this book contains more than enough material for a one semester course.

A First Course In Ordinary Differential Equations

Author: Martin Hermann
Publisher: Springer Science & Business
ISBN: 8132218353
Size: 39.35 MB
Format: PDF, Docs
View: 1535
Download and Read
This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

A Short Course In Ordinary Differential Equations

Author: Qingkai Kong
Publisher: Springer
ISBN: 3319112392
Size: 75.20 MB
Format: PDF
View: 2823
Download and Read
This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.

Gew Hnliche Differentialgleichungen

Author: Vladimir I. Arnold
Publisher: Springer-Verlag
ISBN: 3642564801
Size: 44.85 MB
Format: PDF, ePub, Mobi
View: 1957
Download and Read
nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.