Download advanced membrane science and technology for sustainable energy and environmental applications woodhead publishing series in energy in pdf or read advanced membrane science and technology for sustainable energy and environmental applications woodhead publishing series in energy in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get advanced membrane science and technology for sustainable energy and environmental applications woodhead publishing series in energy in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Advanced Membrane Science And Technology For Sustainable Energy And Environmental Applications

Author: Angelo Basile
Publisher: Elsevier
ISBN: 0857093797
Size: 57.79 MB
Format: PDF, ePub, Docs
View: 5298
Download and Read
Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmental applications presents a comprehensive review of membrane utilisation and integration within energy and environmental industries. Part one introduces the topic of membrane science and engineering, from the fundamentals of membrane processes and separation to membrane characterization and economic analysis. Part two focuses on membrane utilisation for carbon dioxide (CO2) capture in coal and gas power plants, including pre- and post-combustion and oxygen transport technologies. Part three reviews membranes for the petrochemical industry, with chapters covering hydrocarbon fuel, natural gas and synthesis gas processing, as well as advanced biofuels production. Part four covers membranes for alternative energy applications and energy storage, such as membrane technology for redox and lithium batteries, fuel cells and hydrogen production. Finally, part five discusses membranes utilisation in industrial and environmental applications, including microfiltration, ultrafiltration, and forward osmosis, as well as water, wastewater and nuclear power applications. With its distinguished editors and team of expert contributors, Advanced membrane science and technology for sustainable energy and environmental applications is an essential reference for membrane and materials engineers and manufacturers, as well as researchers and academics interested in this field. Presents a comprehensive review of membrane science and technology, focusing on developments and applications in sustainable energy and clean-industry Discusses the fundamentals of membrane processes and separation and membrane characterization and economic analysis Addresses the key issues of membrane utilisation in coal and gas power plants and the petrochemical industry, the use of membranes for alternative energy applications and membrane utilisation in industrial and environmental applications

Current Trends And Future Developments On Bio Membranes

Author: Angelo Basile
Publisher: Elsevier
ISBN: 0128136464
Size: 22.95 MB
Format: PDF, Docs
View: 116
Download and Read
Current Trends and Future Developments on (Bio-) Membranes: Carbon Dioxide Separation/Capture by Using Membranes explores the unique property of membranes to separate gases with different physical and chemical properties. The book covers both polymeric and inorganic materials for CO2 separation and explains their mechanism of action, allowing for the development and most appropriate and efficient processes. It also lists the advantages of using membranes instead of other separation techniques, i.e., their low operating costs and low energy consumption. This book offers a unique opportunity for scientists working in the field of membrane technology for CO2 separation and capture. Outlines numerous membrane-based technologies for CO2 separation and capture Lists new, advanced separation techniques and production processes Includes various applications, modelling, and the economic considerations of each process Covers advanced techniques for the separation of CO2 in natural gas

Advanced Ceramic And Metallic Coating And Thin Film Materials For Energy And Environmental Applications

Author: Jing Zhang
Publisher: Springer
ISBN: 3319599062
Size: 31.21 MB
Format: PDF, Mobi
View: 6179
Download and Read
This book explores the recent developments, perspectives on future research, and pertinent data from academia, industry, and government research laboratory to discuss fundamental mechanisms as well as processing and applications of advanced metallic and ceramic thin film and coating materials for energy and environmental applications. It is a platform to disseminate the latest research progress related to processing, characterization, and modelling. The authors address both thermal barrier and environmental coatings; magnetic and thermoelectric materials; and solar cell and solid oxide fuel cell materials. It is appropriate supplementary reading for students and primary reading for researchers in materials science and engineering.

Polymer Electrolyte Membrane And Direct Methanol Fuel Cell Technology

Author: Christoph Hartnig
Publisher: Elsevier
ISBN: 0857095471
Size: 48.10 MB
Format: PDF, ePub, Docs
View: 2905
Download and Read
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads. This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology Volumes 1 & 2 is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and reviews advanced transport simulation approaches, degradation modelling and experimental monitoring techniques

Functional Materials For Sustainable Energy Applications

Author: J A Kilner
Publisher: Elsevier
ISBN: 0857096370
Size: 37.72 MB
Format: PDF, ePub
View: 1799
Download and Read
Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production. Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials. With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. An essential guide to the development and application of functional materials in sustainable energy production Reviews functional materials for solar power Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage

Membranes For Clean And Renewable Power Applications

Author: A Gugliuzza
Publisher: Woodhead Publishing
ISBN: 0857098659
Size: 38.93 MB
Format: PDF
View: 2255
Download and Read
The development and deployment of membrane technologies continues to advance thanks to innovative materials and novel engineering approaches. Membranes for clean and renewable power applications introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications. Chapters in part one introduce the utilization of membrane technology in the production of clean and renewable power and the combining of membrane processes with renewable energy technologies. Part two focusses on membranes for biofuel production and processing including membranes and membrane reactors for the production of biodiesel and second generation biofuels. Part three discusses membranes for syngas, hydrogen and oxygen production and processing. Chapters highlight steam reforming of biofuels for the production of hydrogen-rich gas A., perovskite membrane reactors, and environmental analysis of hydrogen-methane blends for transportation. Chapters in part four explore membranes for fuel cells including ceramic membranes for intermediate temperature solid oxide fuel cells (SOFC), microbial fuel cells, and direct bioethanol fuel cells. Finally, part five discusses membranes integrated with solar, wind energy and water-related applications including membrane technologies for solar-hydrogen production, solar-desalination plants, and the storage as methane of energy generated by wind power and other renewable sources. A final chapter introduces wastewater processing, energy conservation and energy generation. Membranes for clean and renewable power applications is a comprehensive resource for professionals and consultants in the clean and renewable energy industry, membrane and materials scientists and professionals, and academics and researchers in the field. Introduces the principles and concepts of membrane technology and explores the use of this technology in clean energy applications

Environmental Remediation And Restoration Of Contaminated Nuclear And Norm Sites

Author: L van Velzen
Publisher: Elsevier
ISBN: 1782422382
Size: 17.95 MB
Format: PDF, Docs
View: 4723
Download and Read
Nuclear sites become contaminated with radionuclides due to accidents and activities carried out without due consideration for the environment. Naturally-occurring radioactive materials (NORM) released by industrial processes such as coal power production and fertilizer manufacture may also require clean-up. Environmental remediation and restoration aim to reduce exposure to radiation from contaminated soil or groundwater. This book provides a comprehensive overview of this area. Part 1 provides an introduction to the different types of contaminated site and their characteristics. Part 2 addresses environmental restoration frameworks and processes. Part 3 then reviews different remediation techniques and methods of waste disposal. Explores types and characteristics of contaminated nuclear and NORM sites Provides an in depth guide to environmental restoration frameworks and processes including stakeholder involvement, risk assessment and cost-benefit analysis in the remediation and restoration of contaminated nuclear and NORM sites Offers coverage of remediation techniques and waste disposal from electrokinetic remediation to in situ and ex situ bioremediation of radionuclides contaminated soils

Nano Enhanced And Nanostructured Polymer Based Membranes For Energy And Environmental Applications

Author: Maria Giovanna Buonomenna
Publisher: Woodhead Publishing Limited
ISBN: 9780081019856
Size: 58.30 MB
Format: PDF, ePub, Mobi
View: 2745
Download and Read
Nano Enhanced and Nanostructured Polymer-based Membranes for Energy and Environmental Applications deals with composite, in most cases hybrid polymer-based membranes, for three separate application fields, energy conversion, energy storage and water treatment and recovery. Each chapter clearly explains the various membrane processes and details the corresponding advanced membranes used. Currently, there are no other similar books that deal with these three hot topics from the point-of-view of real applications. As there is growing need for better membranes in several emerging application fields, especially those relating to energy conversion, storage, water treatment and recycling, this book is all the more timely. Discusses interdisciplinary content by a single author, approaching synthesis and development of materials from the perspective of their processability Describes the novel aspects of membrane science that is related to energy storage, conversion and wastewater treatment Presents an emphasis on scientific results which have an impact on real applications in terms of renewable and clean energy challenges

Pervaporation Vapour Permeation And Membrane Distillation

Author: Angelo Basile
Publisher: Elsevier
ISBN: 1782422560
Size: 29.30 MB
Format: PDF
View: 2701
Download and Read
Vapour permeation and membrane distillation are two emerging membrane technologies for the production of vapour as permeate, which, in addition to well-established pervaporation technology, are of increasing interest to academia and industry. As efficient separation and concentration processes, they have high potential for use in the energy, water, chemical, food and pharmaceutical sectors. Part One begins by covering the fundamentals, preparation and characterization of pervaporation, before going on to outline the associated systems and applications. State of the art uses, future trends and next generation pervaporation are then discussed. Part Two then explores the preparation, characterization, systems and applications of membranes for vapour permeation, followed by modelling and the new generation of vapour permeation membranes. Finally, Part Three outlines the fundamentals of membrane distillation and its applications in integrated systems, before the book concludes with a view of the next generation. Explores three emerging membrane technologies that produce vapour as a permeate. Looks at the fundamentals, applications, state of the art uses and next generation of each technology. Provides an authoritative guide for chemical engineers and academic researchers interested in membrane technologies for desalination, process water/steam treatment, water purification, VOCs removal and other aspects of pollution control, industrial process chemistry, renewable energy production or separation and concentration in the food/pharmaceutical industries.

Compendium Of Hydrogen Energy

Author: Michael Ball
Publisher: Woodhead Publishing
ISBN: 1782423869
Size: 55.12 MB
Format: PDF, Kindle
View: 3865
Download and Read
Compendium of Hydrogen Energy Volume 4: Hydrogen Use, Safety and the Hydrogen Economy focuses on the uses of hydrogen. As many experts believe the hydrogen economy will, at some point, replace the fossil fuel economy as the primary source of the world’s energy, this book investigates the uses of this energy, from transport, to stationary and portable applications, with final sections discussing the difficulties and possibilities of the widespread adoption of the hydrogen economy. Written by both leading academics in the fields of sustainable energy and experts from the world of industry Part of a very comprehensive compendium which across four volumes looks at the entirety of the hydrogen energy economy Covers a wide array of hydrogen uses, and details safety tactics, hydrogen applications in transport, and the hydrogen economy as a whole