Download advances in control system technology for aerospace applications lecture notes in control and information sciences in pdf or read advances in control system technology for aerospace applications lecture notes in control and information sciences in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get advances in control system technology for aerospace applications lecture notes in control and information sciences in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Advances In Control System Technology For Aerospace Applications

Author: Eric Feron
Publisher: Springer
ISBN: 3662476940
Size: 10.19 MB
Format: PDF, Kindle
View: 2157
Download and Read
This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

Advances In Aerospace Guidance Navigation And Control

Author: Bogusław Dołęga
Publisher: Springer
ISBN: 3319652834
Size: 72.72 MB
Format: PDF, Kindle
View: 157
Download and Read
The first three CEAS (Counsil of European Aerospace Societies) Specialist Conferences on Guidance, Navigation and Control (CEAS EuroGNC) were held in Munich, Germany in 2011, in Delft, Netherlands in 2013 and in Toulouse, France in 2017. The Warsaw University of Technology (WUT) and the Rzeszow University of Technology (RzUT) accepted the challenge of jointly organizing the 4th edition. The conference aims to promote scientific and technical excellence in the fields of Guidance, Navigation and Control (GNC) in aerospace and other fields of technology. The Conference joins together the industry with the academia research. This book covers four main topics: Guidance and Control, Control Theory Application, Navigation, UAV Control and Dynamic. The papers included focus on the most advanced and actual topics in guidance, navigation and control research areas: · Control theory, analysis, and design · ; Novel navigation, estimation, and tracking methods · Aircraft, spacecraft, missile and UAV guidance, navigation, and control · Flight testing and experimental results · Intelligent control in aerospace applications · Aerospace robotics and unmanned/autonomous systems · Sensor systems for guidance, navigation and control · Guidance, navigation, and control concepts in air traffic control systems For the 4th CEAS Specialist Conference on Guidance, Navigation and Control the International Technical Committee established a formal review process. Each paper was reviewed in compliance with good journal practices by independent and anonymous reviewers. At the end of the review process papers were selected for publication in this book.

Sensing And Control For Autonomous Vehicles

Author: Thor I. Fossen
Publisher: Springer
ISBN: 3319553720
Size: 68.58 MB
Format: PDF, ePub
View: 2157
Download and Read
This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite systems. The target audience primarily comprises research experts in the field of control theory, but the book may also be beneficial for graduate students.

Advances In Aerospace Guidance Navigation And Control

Author: Florian Holzapfel
Publisher: Springer Science & Business Media
ISBN: 9783642198175
Size: 32.19 MB
Format: PDF, ePub, Docs
View: 7554
Download and Read
Over the last few decades, both the aeronautics and space disciplines have greatly influenced advances in controls, sensors, data fusion and navigation. Many of those achievements that made the word “aerospace” synonymous with “high–tech” were enabled by innovations in guidance, navigation and control. Europe has seen a strong trans-national consolidation process in aerospace over the last few decades. Most of the visible products, like commercial aircraft, fighters, helicopters, satellites, launchers or missiles, are not made by a single country – they are the fruits of cooperation. No European country by itself hosts a specialized guidance, navigation and controls community large enough to cover the whole spectrum of disciplines. However, on a European scale, mutual exchange of ideas, concepts and solutions is enriching for all. The 1st CEAS Specialist Conference on Guidance, Navigation and Control is an attempt to bring this community together. This book is a selection of papers presented at the conference. All submitted papers have gone through a formal review process in compliance with good journal practices. The best papers have been recommended by the reviewers to be published in this book.

Advances In Variable Structure Systems And Sliding Mode Control Theory And Applications

Author: Shihua Li
Publisher: Springer
ISBN: 3319628968
Size: 34.82 MB
Format: PDF, Docs
View: 4032
Download and Read
This book reflects the latest developments in variable structure systems (VSS) and sliding mode control (SMC), highlighting advances in various branches of the VSS/SMC field, e.g., from conventional SMC to high-order SMC, from the continuous-time domain to the discrete-time domain, from theories to applications, etc. The book consists of three parts and 16 chapters: in the first part, new VSS/SMC algorithms are proposed and their properties are analyzed, while the second focuses on the use of VSS/SMC techniques to solve a variety of control problems; the third part examines the applications of VSS/SMC to real-time systems. The book introduces postgraduates and researchers to the state-of-the-art in VSS/SMC field, including the theory, methodology, and applications. Relative academic disciplines include Automation, Mathematics, Electrical Engineering, Mechanical Engineering, Instrument Science and Engineering, Electronic Engineering, Computer Science and Technology, Transportation Engineering, Energy and Power Engineering, etc.

Advances In Sliding Mode Control

Author: B Bandyopadhyay
Publisher: Springer
ISBN: 3642369863
Size: 26.20 MB
Format: PDF, ePub, Docs
View: 152
Download and Read
The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear and underactuated systems, sliding mode observers, discrete sliding mode control together with cutting edge research contributions in the application of the sliding mode concept to real world problems. This book provides the reader with a clear and complete picture of the current trends in Variable Structure Systems and Sliding Mode Control Theory.

Motion Control Of Underactuated Mechanical Systems

Author: Javier Moreno-Valenzuela
Publisher: Springer
ISBN: 3319583190
Size: 12.53 MB
Format: PDF, ePub
View: 1713
Download and Read
This volume is the first to present a unified perspective on the control of underactuated mechanical systems. Based on real-time implementation of parameter identification, this book provides a variety of algorithms for the Furuta pendulum and the inertia wheel pendulum, which are two-degrees-of-freedom mechanical systems. Specifically, this work addresses and solves the problem of motion control via trajectory tracking in one joint coordinate while another joint is regulated. Besides, discussions on extensions to higher degrees-of-freedom systems are given. The book, aimed at control engineers as well as graduate students, ranges from the problem of parameter identification of the studied systems to the practical implementation of sophisticated motion control algorithms. Offering real-world solutions to manage the control of underactuated systems, this book provides a concise tutorial on recent breakthroughs in the field, original procedures to achieve bounding of the error trajectories, convergence and gain tuning guidelines.

Nonlinear Analysis And Synthesis Techniques For Aircraft Control

Author: Declan Bates
Publisher: Springer
ISBN: 3540737197
Size: 30.21 MB
Format: PDF, Kindle
View: 4052
Download and Read
This is the first book to focus on the use of nonlinear analysis and synthesis techniques for aircraft control. It is also the first book to address in detail closed-loop control problems for aircraft "on-ground" – i.e. speed and directional control of aircraft before take-off and after touch down. The book will be of interest to engineers, researchers, and students in control engineering, and especially aircraft control.

Advanced Autonomous Vehicle Design For Severe Environments

Author: V.V. Vantsevich
Publisher: IOS Press
ISBN: 1614995761
Size: 39.32 MB
Format: PDF, Docs
View: 280
Download and Read
Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.