Download algal biorefinery an integrated approach in pdf or read algal biorefinery an integrated approach in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get algal biorefinery an integrated approach in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Algal Biorefinery An Integrated Approach

Author: Debabrata Das
Publisher: Springer
ISBN: 3319228137
Size: 10.40 MB
Format: PDF, Mobi
View: 4773
Download and Read
This book critically discusses different aspects of algal production systems and several of the drawbacks related to microalgal biomass production, namely, low biomass yield, and energy-consuming harvesting, dewatering, drying and extraction processes. These provide a background to the state-of-the-art technologies for algal cultivation, CO2 sequestration, and large-scale application of these systems. In order to tap the commercial potential of algae, a biorefinery concept has been proposed that could help to extract maximum benefits from algal biomass. This refinery concept promotes the harvesting of multiple products from the feedstock so as to make the process economically attractive. For the last few decades, algal biomass has been explored for use in various products such as fuel, agricultural crops, pigments and pharmaceuticals, as well as in bioremediation. To meet the huge demand, there has been a focus on large-scale production of algal biomass in closed or open photobioreactors. Different nutritional conditions for algal growth have been explored, such as photoautotrophic, heterotrophic, mixotrophic and oleaginous. This book is aimed at a wide audience, including undergraduates, postgraduates, academics, energy researchers, scientists in industry, energy specialists, policy makers and others who wish to understand algal biorefineries and also keep abreast of the latest developments.

Industrial Biorefineries And White Biotechnology

Author: Ashok Pandey
Publisher: Elsevier
ISBN: 0444634649
Size: 13.23 MB
Format: PDF, Mobi
View: 7278
Download and Read
Industrial Biorefineries and White Biotechnology provides a comprehensive look at the increasing focus on developing the processes and technologies needed for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular, the development of low-cost technologies. During the last 3-4 years, there have been scientific and technological developments in the area; this book represents the most updated information and technological perspective on the topic. Provides information on the most advanced and innovative pretreatment processes and technologies for biomass Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery Provides information on integration of processes for the pretreatment of biomass Designed as a textbook for both graduate students and researchers

Biorefineries And Chemical Processes

Author: Jhuma Sadhukhan
Publisher: John Wiley & Sons
ISBN: 1118698169
Size: 22.32 MB
Format: PDF, Kindle
View: 1247
Download and Read
As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis presents process modelling and integration, and whole system life cycle analysis tools for the synthesis, design, operation and sustainable development of biorefinery and chemical processes. Topics covered include: Introduction: An introduction to the concept and development of biorefineries. Tools: Included here are the methods for detailed economic and environmental impact analyses; combined economic value and environmental impact analysis; life cycle assessment (LCA); multi-criteria analysis; heat integration and utility system design; mathematical programming based optimization and genetic algorithms. Process synthesis and design: Focuses on modern unit operations and innovative process flowsheets. Discusses thermochemical and biochemical processing of biomass, production of chemicals and polymers from biomass, and processes for carbon dioxide capture. Biorefinery systems: Presents biorefinery process synthesis using whole system analysis. Discusses bio-oil and algae biorefineries, integrated fuel cells and renewables, and heterogeneous catalytic reactors. Companion website: Four case studies, additional exercises and examples are available online, together with three supplementary chapters which address waste and emission minimization, energy storage and control systems, and the optimization and reuse of water. This textbook is designed to bridge a gap between engineering design and sustainability assessment, for advanced students and practicing process designers and engineers.

Life Cycle Assessment Of Biorefineries

Author: Edgard Gnansounou
Publisher: Elsevier
ISBN: 0444635866
Size: 75.89 MB
Format: PDF, ePub, Docs
View: 1782
Download and Read
Life-Cycle Assessment of Biorefineries, the sixth and last book in the series on biomass-biorefineries discusses the unprecedented growth and development in the emerging concept of a global bio-based economy in which biomass-based biorefineries have attained center stage for the production of fuels and chemicals. It is envisaged that by 2020 a majority of chemicals currently being produced through a chemical route will be produced via a bio-based route. Agro-industrial residues, municipal solid wastes, and forestry wastes have been considered as the most significant feedstocks for such bio-refineries. However, for the techno-economic success of such biorefineries, it is of prime and utmost importance to understand their lifecycle assessment for various aspects. Provides state-of-art information on the basics and fundamental principles of LCA for biorefineries Contains key features for the education and understanding of integrated biorefineries Presents models that are used to cope with land-use changes and their effects on biorefineries Includes relevant case studies that illustrate main points

Biofuels From Algae

Author: Ashok Pandey
Publisher: Newnes
ISBN: 0444595821
Size: 54.98 MB
Format: PDF, Mobi
View: 6522
Download and Read
This book provides in-depth information on basic and applied aspects of biofuels production from algae. It begins with an introduction to the topic, and follows with the basic scientific aspects of algal cultivation and its use for biofuels production, such as photo bioreactor engineering for microalgae production, open culture systems for biomass production and the economics of biomass production. It provides state-of-the-art information on synthetic biology approaches for algae suitable for biofuels production, followed by algal biomass harvesting, algal oils as fuels, biohydrogen production from algae, formation/production of co-products, and more. The book also covers topics such as metabolic engineering and molecular biology for algae for fuel production, life cycle assessment and scale-up and commercialization. It is highly useful and helps you to plan new research and design new economically viable processes for the production of clean fuels from algae. Covers in a comprehensive but concise way most of the algae biomass conversion technologies currently available Lists all the products produced from algae, i.e. biohydrogen, fuel oils, etc., their properties and potential uses Includes the economics of the various processes and the necessary steps for scaling them up

Algal Biofuels

Author: Sanjay Kumar Gupta
Publisher: Springer
ISBN: 331951010X
Size: 23.12 MB
Format: PDF, Docs
View: 3522
Download and Read
This edited volume focuses on comprehensive state-of-the-art information about the practical aspects of cultivation, harvesting, biomass processing and biofuel production from algae. Chapters cover topics such as synthetic ecological engineering approaches towards sustainable production of biofuel feedstock, and algal biofuel production processes using wastewater. Readers will also discover more about the role of biotechnological engineering in improving ecophysiology, biomass and lipid yields. Particular attention is given to opportunities of commercialization of algal biofuels that provides a realistic assessment of various techno-economical aspects of pilot scale algal biofuel production. The authors also explore the pre-treatment of biomass, catalytic conversion of algal lipids and hydrothermal liquefaction with the biorefinery approach in detail. In a nut shell, this volume will provide a wealth of information based on a realistic evaluation of contemporary developments in algal biofuel research with an emphasis on pilot scale studies. Researchers studying and working in the areas of environmental science, biotechnology, genetic engineering and biochemistry will find this work instructive and informative.

Platform Chemical Biorefinery

Author: Satinder Kaur Brar
Publisher: Elsevier
ISBN: 0128030046
Size: 50.33 MB
Format: PDF, ePub, Mobi
View: 6692
Download and Read
Platform Chemical Biorefinery: Future Green Chemistry provides information on three different aspects of platform chemical biorefinery. The book first presents a basic introduction to the industry beneficial for university students, then provides engineering details of existing or potential platform chemical biorefinery processes helpful to technical staff of biorefineries. Finally, the book presents a critical review of the entire platform chemical biorefinery process, including extensive global biorefinery practices and their potential environmental and market-related consequences. Platform chemicals are building blocks of different valuable chemicals. The book evaluates the possibility of renewable feedstock-based platform chemical production and the fundamental challenges associated with this objective. Thus, the book is a useful reference for both academic readers and industry technical workers. The book guides the research community working in the field of platform chemical biorefinery to develop new pathways and technologies in combination with their market value and desirability. Offers comprehensive coverage of platform chemicals biorefineries, recent advances and technology developments, potential issues for preventing commercialization, and solutions Discusses existing technologies for platform chemicals production, highlighting benefits as well their possible adverse effects on the environment and food security Includes a global market analysis of platform chemicals and outlines industry opportunities Serves as a useful reference for both academic readers and industry technical workers

Sapphire Energy Integrated Algal Biorefinery

Author:
Publisher:
ISBN:
Size: 40.85 MB
Format: PDF, ePub
View: 437
Download and Read
Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil. SEI's technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI's commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR demonstrated significant year over year yield improvements (2013 to 2014), and reduction in the cost of biomass production. Therefore, the IABR fulfills a number of critical functions in SEI's integrated development pipeline. These functions are critical in general for the commercialization of algal biomass production and production of biofuels from algal biomass.

Algae And Environmental Sustainability

Author: Bhaskar Singh
Publisher: Springer
ISBN: 8132226410
Size: 49.96 MB
Format: PDF, Kindle
View: 2611
Download and Read
This book presents the dynamic role of algae in a sustainable environment. Two major aspects, namely bioenergy and bioremediation, have been elaborated in various chapter contributed by scientists and teachers from different geographical areas throughout the world. Algal biofuels is an emerging area of equal interest to researchers, industries, and policy makers working or focusing on alternative (i.e. renewable) fuels. Algae have been an area of interest due to their wide range of applications. Over the last 5 decades, eukaryotic algae have been used in the aquaculture industry as feed for invertebrates, providing a rich source of antioxidants, dietary fiber, minerals and protein. More recently, there has been a focus on the use of algal biomass in the development of alternative fuels. The extraction of oil from algae has been widely explored as a much more viable feedstock than plant-based oils in large-scale fuel production. using algae as feedstock has the advantages that it doesn’t require arable land and that wastewater can be used as a source of nutrients in their culture. The multifunctional approach of algae includes pollution remediation, carbon sequestration, biofuels production, and delivery of value-added products. However, there are still some obstacles that need to be overcome to make their use as potential feedstock for biofuels techno-economically feasible. In order to maintain the sustainability aspect of algal biofuels, various aspects have to be studied and critically analyzed to assess the long-term sustainability of algal derived biofuels. This book discusses the role of algae as a promising future feedstock for biofuels. They are known to sequester carbon in much larger amounts than plants and as such the book also describes their phycoremediation potential for conventional as well as emerging contaminants. It describes the role of anaerobic digestion in algal biorefineries; bioreactions and process parameters; biogas recovery and reuse. The role of algal biofilm based technology in wastewater treatment and transforming waste into bio-products is discussed, and remediation of sewage water through algae is assessed. The book also describes the production of biohydrogen, bio-oil, biodiesel; and the major bottlenecks in their usage. The emerging characterization techniques of these biofuels (bio-oil and biodiesel) are described, as are the decolorizing potential of algae and the genetic engineering techniques that could enhance the production of lipids in algae. Other aspects of the book include the role of remote sensing technology in the monitoring of algae and a life cycle assessment of algal biofuels.

Integrated Biorefineries

Author: Paul R. Stuart
Publisher: CRC Press
ISBN: 1439803471
Size: 10.26 MB
Format: PDF, ePub
View: 214
Download and Read
Integrated Biorefineries: Design, Analysis, and Optimization examines how to create a competitive edge in biorefinery innovation through integration into existing processes and infrastructure. Leading experts from around the world working in design, synthesis, and optimization of integrated biorefineries present the various aspects of this complex process, capturing the state of the art in the advancing bioeconomy. The book defines an integrated biorefinery as a processing facility that transforms biomass into value-added products—from biofuels and biochemicals to food and pharmaceuticals. The chapters cover biorefinery product and process design, supply chains, process analysis, feedstocks, technologies, and policy and environmental analysis. They focus on second-generation feedstocks, including forestry resources, energy crops, agricultural residues, oils, and various waste materials. With the growing interest in sustainability in general and in renewable resources in industrial facilities, biorefineries are likely to play increasingly significant roles and have greater economic, environmental, and societal impact. This book fills an information gap by presenting cutting-edge advances that can effectively guide engineers and decision makers in the synthesis, selection, design, analysis, and optimization of biorefineries.