Download an informal introduction to stochastic calculus with applications in pdf or read an informal introduction to stochastic calculus with applications in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get an informal introduction to stochastic calculus with applications in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

An Informal Introduction To Stochastic Calculus With Applications

Author: Ovidiu Calin
Publisher: World Scientific
ISBN: 9814678953
Size: 35.48 MB
Format: PDF, Mobi
View: 1176
Download and Read
The goal of this book is to present Stochastic Calculus at an introductory level and not at its maximum mathematical detail. The author aims to capture as much as possible the spirit of elementary deterministic Calculus, at which students have been already exposed. This assumes a presentation that mimics similar properties of deterministic Calculus, which facilitates understanding of more complicated topics of Stochastic Calculus. Contents:A Few Introductory ProblemsBasic NotionsUseful Stochastic ProcessesProperties of Stochastic ProcessesStochastic IntegrationStochastic DifferentiationStochastic Integration TechniquesStochastic Differential EquationsApplications of Brownian MotionGirsanov's Theorem and Brownian MotionSome Applications of Stochastic CalculusHints and Solutions Readership: Undergraduate and graduate students interested in stochastic processes. Key Features:The book contains numerous problems with full solutions and plenty of worked out examples and figures, which facilitate material understandingThe material was tested on students at several universities around the world (Taiwan, Kuwait, USA); this led to a presentation form that balances both technicality and understandingThe presentation mimics as close as possible the same chapters as in deterministic calculus; former calculus students will find this chronology of ideas familiar to CalculusKeywords:Stochastic Processes;Probability Distribution;Brownian Motion;Filtering Theory;Martingale;Ito Calculus;Poisson Process;Bessel Process

Introduction To Stochastic Processes

Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 9780412995118
Size: 20.31 MB
Format: PDF, ePub
View: 4302
Download and Read
This concise, informal introduction to stochastic processes evolving with time was designed to meet the needs of graduate students not only in mathematics and statistics, but in the many fields in which the concepts presented are important, including computer science, economics, business, biological science, psychology, and engineering. With emphasis on fundamental mathematical ideas rather than proofs or detailed applications, the treatment introduces the following topics: Markov chains, with focus on the relationship between the convergence to equilibrium and the size of the eigenvalues of the stochastic matrix Infinite state space, including the ideas of transience, null recurrence and positive recurrence The three main types of continual time Markov chains and optimal stopping of Markov chains Martingales, including conditional expectation, the optional sampling theorem, and the martingale convergence theorem Renewal process and reversible Markov chains Brownian motion, both multidimensional and one-dimensional Introduction to Stochastic Processes is ideal for a first course in stochastic processes without measure theory, requiring only a calculus-based undergraduate probability course and a course in linear algebra.

Deterministic And Stochastic Topics In Computational Finance

Author: Ovidiu Calin
Publisher: World Scientific Publishing Company
ISBN: 9813203102
Size: 28.85 MB
Format: PDF, Mobi
View: 3371
Download and Read
What distinguishes this book from other texts on mathematical finance is the use of both probabilistic and PDEs tools to price derivatives for both constant and stochastic volatility models, by which the reader has the advantage of computing explicitly a large number of prices for European, American and Asian derivatives. The book presents continuous time models for financial markets, starting from classical models such as Black–Scholes and evolving towards the most popular models today such as Heston and VAR. A key feature of the textbook is the large number of exercises, mostly solved, which are designed to help the reader to understand the material. The book is based on the author's lectures on topics on computational finance for senior and graduate students, delivered in USA (Princeton University and EMU), Taiwan and Kuwait. The prerequisites are an introductory course in stochastic calculus, as well as the usual calculus sequence. The book is addressed to undergraduate and graduate students in Masters of Finance programs as well as to those who wish to become more efficient in their practical applications. Topics covered: Interest Rates and BondsForward Rates and Yield CurvesRisk-neutral ValuationMartingale MeasuresBlack–Scholes AnalysisAmerican OptionsStochastic Volatility Models (Heston, AR, GARCH)Stochastic Return Models (VAR) Request Inspection Copy

Monte Carlo Simulation With Applications To Finance

Author: Hui Wang
Publisher: CRC Press
ISBN: 1439858241
Size: 57.92 MB
Format: PDF, Kindle
View: 6727
Download and Read
Developed from the author’s course on Monte Carlo simulation at Brown University, Monte Carlo Simulation with Applications to Finance provides a self-contained introduction to Monte Carlo methods in financial engineering. It is suitable for advanced undergraduate and graduate students taking a one-semester course or for practitioners in the financial industry. The author first presents the necessary mathematical tools for simulation, arbitrary free option pricing, and the basic implementation of Monte Carlo schemes. He then describes variance reduction techniques, including control variates, stratification, conditioning, importance sampling, and cross-entropy. The text concludes with stochastic calculus and the simulation of diffusion processes. Only requiring some familiarity with probability and statistics, the book keeps much of the mathematics at an informal level and avoids technical measure-theoretic jargon to provide a practical understanding of the basics. It includes a large number of examples as well as MATLAB® coding exercises that are designed in a progressive manner so that no prior experience with MATLAB is needed.

Introduction To Probability And Stochastic Processes With Applications

Author: Liliana Blanco Castañeda
Publisher: John Wiley & Sons
ISBN: 1118344960
Size: 37.22 MB
Format: PDF, Mobi
View: 4526
Download and Read
An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basic concepts of probability to advanced topics for further study, including Itô integrals, martingales, and sigma algebras. Additional topical coverage includes: Distributions of discrete and continuous random variables frequently used in applications Random vectors, conditional probability, expectation, and multivariate normal distributions The laws of large numbers, limit theorems, and convergence of sequences of random variables Stochastic processes and related applications, particularly in queueing systems Financial mathematics, including pricing methods such as risk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisite mathematics and tables of standard distributions for use in applications are provided, and plentiful exercises, problems, and solutions are found throughout. Also, a related website features additional exercises with solutions and supplementary material for classroom use. Introduction to Probability and Stochastic Processes with Applications is an ideal book for probability courses at the upper-undergraduate level. The book is also a valuable reference for researchers and practitioners in the fields of engineering, operations research, and computer science who conduct data analysis to make decisions in their everyday work.

Stochastic Analysis In Discrete And Continuous Settings

Author: Nicolas Privault
Publisher: Springer
ISBN: 3642023800
Size: 33.71 MB
Format: PDF, Mobi
View: 5322
Download and Read
This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.

Measure Theory And Probability Theory

Author: Krishna B. Athreya
Publisher: Springer Science & Business Media
ISBN: 038732903X
Size: 51.75 MB
Format: PDF, ePub, Mobi
View: 319
Download and Read
This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.