Download an introduction to numerical analysis for electrical and computer engineers in pdf or read an introduction to numerical analysis for electrical and computer engineers in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get an introduction to numerical analysis for electrical and computer engineers in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



An Introduction To Numerical Analysis For Electrical And Computer Engineers

Author: Christopher J. Zarowski
Publisher: John Wiley & Sons
ISBN: 9780471650409
Size: 54.68 MB
Format: PDF, ePub
View: 6286
Download and Read
This book is an introduction to numerical analysis and intends to strike a balance between analytical rigor and the treatment of particular methods for engineering problems Emphasizes the earlier stages of numerical analysis for engineers with real-life problem-solving solutions applied to computing and engineering Includes MATLAB oriented examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Numerical And Analytical Methods With Matlab For Electrical Engineers

Author: William Bober
Publisher: CRC Press
ISBN: 1466576073
Size: 51.41 MB
Format: PDF, ePub, Docs
View: 431
Download and Read
Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB® for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students. This book includes: An introduction to the MATLAB programming environment Mathematical techniques for matrix algebra, root finding, integration, and differential equations More advanced topics, including transform methods, signal processing, curve fitting, and optimization An introduction to the MATLAB graphical design environment, Simulink Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming—not just button-pushing with a software program—the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

Scientific Computing And Differential Equations

Author: Gene H. Golub
Publisher: Elsevier
ISBN: 0080516696
Size: 36.15 MB
Format: PDF, ePub
View: 3410
Download and Read
Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level

Fundamental Numerical Methods For Electrical Engineering

Author: Stanislaw Rosloniec
Publisher: Springer Science & Business Media
ISBN: 3540795197
Size: 76.82 MB
Format: PDF, ePub, Mobi
View: 515
Download and Read
Stormy development of electronic computation techniques (computer systems and software), observed during the last decades, has made possible automation of data processing in many important human activity areas, such as science, technology, economics and labor organization. In a broadly understood technology area, this developmentledtoseparationofspecializedformsofusingcomputersforthedesign and manufacturing processes, that is: – computer-aided design (CAD) – computer-aided manufacture (CAM) In order to show the role of computer in the rst of the two applications m- tioned above, let us consider basic stages of the design process for a standard piece of electronic system, or equipment: – formulation of requirements concerning user properties (characteristics, para- ters) of the designed equipment, – elaboration of the initial, possibly general electric structure, – determination of mathematical model of the system on the basis of the adopted electric structure, – determination of basic responses (frequency- or time-domain) of the system, on the base of previously established mathematical model, – repeated modi cation of the adopted diagram (changing its structure or element values) in case, when it does not satisfy the adopted requirements, – preparation of design and technological documentation, – manufacturing of model (prototype) series, according to the prepared docum- tation, – testing the prototype under the aspect of its electric properties, mechanical du- bility and sensitivity to environment conditions, – modi cation of prototype documentation, if necessary, and handing over the documentation to series production. The most important stages of the process under discussion are illustrated in Fig. I. 1. xi xii Introduction Fig. I.

An Introduction To Matlab Programming And Numerical Methods For Engineers

Author: Timmy Siauw
Publisher: Academic Press
ISBN: 0127999140
Size: 51.67 MB
Format: PDF, ePub, Mobi
View: 7180
Download and Read
Assuming no prior background in linear algebra or real analysis, An Introduction to MATLAB® Programming and Numerical Methods for Engineers enables you to develop good computational problem solving techniques through the use of numerical methods and the MATLAB® programming environment. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level allowing you to quickly apply results in practical settings. Tips, warnings, and "try this" features within each chapter help the reader develop good programming practices Chapter summaries, key terms, and functions and operators lists at the end of each chapter allow for quick access to important information At least three different types of end of chapter exercises — thinking, writing, and coding — let you assess your understanding and practice what you've learned

Introduction To Numerical And Analytical Methods With Matlab For Engineers And Scientists

Author: William Bober
Publisher: CRC Press
ISBN: 146657609X
Size: 79.48 MB
Format: PDF, ePub, Docs
View: 5793
Download and Read
Introduction to Numerical and Analytical Methods with MATLAB® for Engineers and Scientists provides the basic concepts of programming in MATLAB for engineering applications. • Teaches engineering students how to write computer programs on the MATLAB platform • Examines the selection and use of numerical and analytical methods through examples and case studies • Demonstrates mathematical concepts that can be used to help solve engineering problems, including matrices, roots of equations, integration, ordinary differential equations, curve fitting, algebraic linear equations, and more The text covers useful numerical methods, including interpolation, Simpson’s rule on integration, the Gauss elimination method for solving systems of linear algebraic equations, the Runge-Kutta method for solving ordinary differential equations, and the search method in combination with the bisection method for obtaining the roots of transcendental and polynomial equations. It also highlights MATLAB’s built-in functions. These include interp1 function, the quad and dblquad functions, the inv function, the ode45 function, the fzero function, and many others. The second half of the text covers more advanced topics, including the iteration method for solving pipe flow problems, the Hardy-Cross method for solving flow rates in a pipe network, separation of variables for solving partial differential equations, and the use of Laplace transforms to solve both ordinary and partial differential equations. This book serves as a textbook for a first course in numerical methods using MATLAB to solve problems in mechanical, civil, aeronautical, and electrical engineering. It can also be used as a textbook or as a reference book in higher level courses.

Numerical Analysis For Electromagnetic Integral Equations

Author: Karl F. Warnick
Publisher: Artech House
ISBN: 1596933348
Size: 45.32 MB
Format: PDF, Kindle
View: 6137
Download and Read
This unique volume is the first book on integral equation-based methods that combines quantitative formulas for predicting numerical simulation accuracy together with rigorous error estimates and results for dozens of actual electromagnetics and wave propagation problems. You get the latest insights on accuracy-improving methods like regularization and error-increasing effects such as edge singularities and resonance, along with full details on how to determine mesh density, choice of basis functions, and other parameters needed to optimize any numerical simulation.

Numerical Methods For Engineering

Author: Karl F. Warnick
Publisher: Scitech Pub Incorporated
ISBN: 9781891121999
Size: 38.53 MB
Format: PDF, ePub
View: 5120
Download and Read
This textbook teaches students to create computer codes used to engineer antennas, microwave circuits, and other critical technologies for wireless communications and other applications of electromagnetic fields and waves. Worked code examples are provided for MATLAB technical computing software. It is the only textbook on numerical methods that begins at the undergraduate engineering student level but bring students to the state-of-the-art by the end of the book. It focuses on the most important and popular numerical methods, going into depth with examples and problem sets of escalating complexity. This book requires only one core course of electromagnetics, allowing it to be useful both at the senior and beginning graduate levels. Developing and using numerical methods in a powerful tool for students to learn the principles of intermediate and advanced electromagnetics. This book fills the missing space of current textbooks that either lack depth on key topics (particularly integral equations and the method of moments) and where the treatment is not accessible to students without an advanced theory course. Important topics include: Method of Moments; Finite Difference Time Domain Method; Finite Element Method; Finite Element Method-Boundary Element Method; Numerical Optimization; and Inverse Scattering.

Computer Oriented Numerical Methods

Author: V. RAJARAMAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120307865
Size: 29.71 MB
Format: PDF, ePub, Mobi
View: 4582
Download and Read
This book is a concise presentation of the basic concepts used in evolving numerical methods with special emphasis on developing computational algorithms for solving problems in algebra and calculus on a computer. It is written for undergraduate science and engineering students who have taken a first course in differential and integral calculus. The approach is to ensure conceptual understanding of the numerical methods by relying on students geometric intuition. The book provides coverage of iterative methods for solving algebraic and transcendental equations, direct and iterative methods of solving simultaneous algebraic equations, numerical methods for differen-tiation and integration, and solution of ordinary differential equations with initial conditions. The formulation of algorithms is illustrated with a number of solved examples and an algorithmic language based on English (and similar to PASCAL) is used to express the logic of the numerical procedures. This approach is thus different from that used in most books which either use a programming language like FORTRAN or use flow charts to express algorithms. The solutions to selected problems have been provided at the end of the book.

Applied Numerical Methods Using Matlab

Author: Won Y. Yang
Publisher: John Wiley & Sons
ISBN: 0471705187
Size: 45.22 MB
Format: PDF, Mobi
View: 1807
Download and Read
In recent years, with the introduction of new media products, there has been a shift in the use of programming languages from FORTRAN or C to MATLAB for implementing numerical methods. This book makes use of the powerful MATLAB software to avoid complex derivations, and to teach the fundamental concepts using the software to solve practical problems. Over the years, many textbooks have been written on the subject of numerical methods. Based on their course experience, the authors use a more practical approach and link every method to real engineering and/or science problems. The main benefit is that engineers don't have to know the mathematical theory in order to apply the numerical methods for solving their real-life problems. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.