Download an introduction to optimization wiley series in discrete mathematics and optimization in pdf or read an introduction to optimization wiley series in discrete mathematics and optimization in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get an introduction to optimization wiley series in discrete mathematics and optimization in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



An Introduction To Optimization

Author: Edwin K. P. Chong
Publisher: John Wiley & Sons
ISBN: 1118515153
Size: 12.31 MB
Format: PDF, Docs
View: 3826
Download and Read
Praise for the Third Edition ". . . guides and leads the reader through the learning path . . . [e]xamples are stated very clearly and the results are presented with attention to detail." —MAA Reviews Fully updated to reflect new developments in the field, the Fourth Edition of Introduction to Optimization fills the need for accessible treatment of optimization theory and methods with an emphasis on engineering design. Basic definitions and notations are provided in addition to the related fundamental background for linear algebra, geometry, and calculus. This new edition explores the essential topics of unconstrained optimization problems, linear programming problems, and nonlinear constrained optimization. The authors also present an optimization perspective on global search methods and include discussions on genetic algorithms, particle swarm optimization, and the simulated annealing algorithm. Featuring an elementary introduction to artificial neural networks, convex optimization, and multi-objective optimization, the Fourth Edition also offers: A new chapter on integer programming Expanded coverage of one-dimensional methods Updated and expanded sections on linear matrix inequalities Numerous new exercises at the end of each chapter MATLAB exercises and drill problems to reinforce the discussed theory and algorithms Numerous diagrams and figures that complement the written presentation of key concepts MATLAB M-files for implementation of the discussed theory and algorithms (available via the book's website) Introduction to Optimization, Fourth Edition is an ideal textbook for courses on optimization theory and methods. In addition, the book is a useful reference for professionals in mathematics, operations research, electrical engineering, economics, statistics, and business.

Introduction To Discrete Dynamical Systems And Chaos

Author: Mario Martelli
Publisher: John Wiley & Sons
ISBN: 1118031121
Size: 17.57 MB
Format: PDF, Mobi
View: 1429
Download and Read
A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Average Case Analysis Of Algorithms On Sequences

Author: Wojciech Szpankowski
Publisher: John Wiley & Sons
ISBN: 1118031024
Size: 35.35 MB
Format: PDF
View: 6719
Download and Read
A timely book on a topic that has witnessed a surge of interest over the last decade, owing in part to several novel applications, most notably in data compression and computational molecular biology. It describes methods employed in average case analysis of algorithms, combining both analytical and probabilistic tools in a single volume. * Tools are illustrated through problems on words with applications to molecular biology, data compression, security, and pattern matching. * Includes chapters on algorithms and data structures on words, probabilistic and analytical models, inclusion-exclusion principles, first and second moment methods, subadditive ergodic theorem and large deviations, elements of information theory, generating functions, complex asymptotic methods, Mellin transform and its applications, and analytic poissonization and depoissonization. * Written by an established researcher with a strong international reputation in the field.

An Introduction To Optimization

Author: Edwin Kah Pin Chong
Publisher: Wiley-Interscience
ISBN:
Size: 26.25 MB
Format: PDF, ePub, Docs
View: 7501
Download and Read
An up-to-date, accessible introduction to an increasingly important field This timely and authoritative book fills a growing need for an introductory text to optimization methods and theory at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked-out examples to illustrate both theory and algorithms, this book also provides: A review of the required mathematical background material A mathematical discussion at a level accessible to MBA and business students A treatment of both linear and nonlinear programming An introduction to the most recent developments, including neural networks, genetic algorithms, and the nonsimplex method of Karmarkar A chapter on the use of descent algorithms for the training of feedforward neural networks Exercise problems after every chapter MATLAB exercises and examples An optional solutions manual with MATLAB source listings This book helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business.

Optimization Methods For Logical Inference

Author: Vijay Chandru
Publisher: John Wiley & Sons
ISBN: 1118031415
Size: 41.70 MB
Format: PDF, ePub
View: 437
Download and Read
Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods-propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.

Graphs And Algorithms

Author: M. Gondran
Publisher: John Wiley & Sons Incorporated
ISBN:
Size: 80.95 MB
Format: PDF, Docs
View: 5713
Download and Read
Generalities about graphs. The shortest path problem in a graph. Path algebras. Trees and arborescences. Flows and transportation networks. Flows with gains. Multicommodity flows. Matchings and b-matchings. Eulerian and hamiltonian walks. Matroids. Non-polynomial problems. Branch and bound algorithms. Approximate algorithms. Linear programming. Integer linear programming. Lagrangean relaxation and solving the dual problem. Dynamic programming. Minimum ratio problems.

Engineering Optimization

Author: Xin-She Yang
Publisher: John Wiley & Sons
ISBN: 9780470640418
Size: 45.73 MB
Format: PDF, Docs
View: 590
Download and Read
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Theory Of Linear And Integer Programming

Author: Alexander Schrijver
Publisher: John Wiley & Sons
ISBN: 9780471982326
Size: 36.32 MB
Format: PDF, ePub
View: 1978
Download and Read
Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index

Discrete Dynamical Systems And Chaos

Author: Mario Martelli
Publisher: Chapman & Hall/CRC
ISBN:
Size: 57.97 MB
Format: PDF, ePub, Mobi
View: 4690
Download and Read
In a balanced presentation, this Monograph presents definitions and results on dynamical systems and chaos in a manner accessible to undergraduates in a range of disciplines with of theoretical results and practical applications.