Download apache hadoop yarn moving beyond mapreduce and batch processing with apache hadoop 2 addison wesley data analytics in pdf or read apache hadoop yarn moving beyond mapreduce and batch processing with apache hadoop 2 addison wesley data analytics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get apache hadoop yarn moving beyond mapreduce and batch processing with apache hadoop 2 addison wesley data analytics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Apache Hadoop Yarn

Author: Arun Murthy
Publisher: Addison-Wesley Professional
ISBN: 0133441911
Size: 33.43 MB
Format: PDF
View: 5490
Download and Read
“This book is a critically needed resource for the newly released Apache Hadoop 2.0, highlighting YARN as the significant breakthrough that broadens Hadoop beyond the MapReduce paradigm.” —From the Foreword by Raymie Stata, CEO of Altiscale The Insider’s Guide to Building Distributed, Big Data Applications with Apache Hadoop™ YARN Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache Hadoop™ YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances. YARN project founder Arun Murthy and project lead Vinod Kumar Vavilapalli demonstrate how YARN increases scalability and cluster utilization, enables new programming models and services, and opens new options beyond Java and batch processing. They walk you through the entire YARN project lifecycle, from installation through deployment. You’ll find many examples drawn from the authors’ cutting-edge experience—first as Hadoop’s earliest developers and implementers at Yahoo! and now as Hortonworks developers moving the platform forward and helping customers succeed with it. Coverage includes YARN’s goals, design, architecture, and components—how it expands the Apache Hadoop ecosystem Exploring YARN on a single node Administering YARN clusters and Capacity Scheduler Running existing MapReduce applications Developing a large-scale clustered YARN application Discovering new open source frameworks that run under YARN

Practical Data Science With Hadoop And Spark

Author: Ofer Mendelevitch
Publisher: Addison-Wesley Professional
ISBN: 9780134024141
Size: 46.53 MB
Format: PDF, Mobi
View: 4114
Download and Read
The Complete Guide to Data Science with Hadoop For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop(r) and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language Normal 0 false false false EN-US X-NONE X-NONE "

Hadoop 2 Quick Start Guide

Author: Doug Eadline
Publisher: Addison-Wesley Professional
ISBN: 9780134049946
Size: 34.89 MB
Format: PDF
View: 375
Download and Read
Get started fast with Apache Hadoop 2, with the first easy, accessible guide to this revolutionary Big Data technology. Building on his unsurpassed experience teaching Hadoop and Big Data, Dr. Douglas Eadline covers all the basics you need to know to install and use Hadoop 2 on both personal computers and servers, and navigate the entire Apache Hadoop ecosystem. Eadline demystifies Hadoop 2, explains the problems it solves, shows how it relates to Big Data, and demonstrates both administrators and users work with it. He explains the central role of MapReduce in Hadoop 1, and how (and why) YARN and Hadoop 2 move beyond MapReduce. You'll find essential information on: Planning and performing Hadoop 2 installations -- including decisions about hardware, software, clustering, and HDFS Using the Hadoop Distributed File System (HDFS) and working around its tradeoffs Running and benchmarking Hadoop 2 programs Working with MapReduce -- including basic programming examples Using higher-level tools, including Pig and Hive Getting started with Apache Hadoop YARN frameworks Administering Hadoop 2 with Ambari, rmadmin, and automated scripts From its Getting Started checklist/flowchart to its roadmap of additional resources, Hadoop 2 Quick-Start Guide is your perfect Hadoop 2 starting point -- and your fastest way to start mastering Big Data.

Big Data And High Performance Computing

Author: L. Grandinetti
Publisher: IOS Press
ISBN: 1614995834
Size: 27.30 MB
Format: PDF, Kindle
View: 7602
Download and Read
Big Data has been much in the news in recent years, and the advantages conferred by the collection and analysis of large datasets in fields such as marketing, medicine and finance have led to claims that almost any real world problem could be solved if sufficient data were available. This is of course a very simplistic view, and the usefulness of collecting, processing and storing large datasets must always be seen in terms of the communication, processing and storage capabilities of the computing platforms available. This book presents papers from the International Research Workshop, Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2014. The papers selected for publication here discuss fundamental aspects of the definition of Big Data, as well as considerations from practice where complex datasets are collected, processed and stored. The concepts, problems, methodologies and solutions presented are of much more general applicability than may be suggested by the particular application areas considered. As a result the book will be of interest to all those whose work involves the processing of very large data sets, exascale computing and the emerging fields of data science

Yarn Essentials

Author: Amol Fasale
Publisher: Packt Publishing Ltd
ISBN: 1784397725
Size: 72.81 MB
Format: PDF
View: 3421
Download and Read
If you have a working knowledge of Hadoop 1.x but want to start afresh with YARN, this book is ideal for you. You will be able to install and administer a YARN cluster and also discover the configuration settings to fine-tune your cluster both in terms of performance and scalability. This book will help you develop, deploy, and run multiple applications/frameworks on the same shared YARN cluster.

Expert Hadoop Administration

Author: Sam R. Alapati
Publisher: Addison-Wesley Professional
ISBN: 9780134597195
Size: 20.55 MB
Format: PDF, ePub, Mobi
View: 2006
Download and Read
The Comprehensive, Up-to-Date Apache Hadoop Administration Handbook and Reference Sam Alapati has worked with production Hadoop clusters for six years. His unique depth of experience has enabled him to write the go-to resource for all administrators looking to spec, size, expand, and secure production Hadoop clusters of any size. Paul Dix, Series Editor In Expert Hadoop(r) Administration, leading Hadoop administrator Sam R. Alapati brings together authoritative knowledge for creating, configuring, securing, managing, and optimizing production Hadoop clusters in any environment. Drawing on his experience with large-scale Hadoop administration, Alapati integrates action-oriented advice with carefully researched explanations of both problems and solutions. He covers an unmatched range of topics and offers an unparalleled collection of realistic examples. Alapati demystifies complex Hadoop environments, helping you understand exactly what happens behind the scenes when you administer your cluster. You ll gain unprecedented insight as you walk through building clusters from scratch and configuring high availability, performance, security, encryption, and other key attributes. The high-value administration skills you learn here will be indispensable no matter what Hadoop distribution you use or what Hadoop applications you run. Understand Hadoop s architecture from an administrator s standpoint Create simple and fully distributed clusters Run MapReduce and Spark applications in a Hadoop cluster Manage and protect Hadoop data and high availability Work with HDFS commands, file permissions, and storage management Move data, and use YARN to allocate resources and schedule jobs Manage job workflows with Oozie and Hue Secure, monitor, log, and optimize Hadoop Benchmark and troubleshoot Hadoop Normal 0 false false false EN-US X-NONE X-NONE "

Hadoop The Definitive Guide

Author: Tom White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Size: 13.93 MB
Format: PDF, ePub
View: 1436
Download and Read
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

Advanced Analytics With Spark

Author: Sandy Ryza
Publisher: "O'Reilly Media, Inc."
ISBN: 1491972920
Size: 65.65 MB
Format: PDF, ePub, Mobi
View: 4431
Download and Read
In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses

Hadoop Application Architectures

Author: Mark Grover
Publisher: "O'Reilly Media, Inc."
ISBN: 1491900075
Size: 28.48 MB
Format: PDF
View: 6272
Download and Read
Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing