Download applied bayesian modelling wiley series in probability and statistics in pdf or read applied bayesian modelling wiley series in probability and statistics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get applied bayesian modelling wiley series in probability and statistics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Applied Bayesian Modelling

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 1118895061
Size: 15.83 MB
Format: PDF, ePub, Mobi
View: 6862
Download and Read
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Bayesian Statistical Modelling

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470035935
Size: 37.39 MB
Format: PDF, Mobi
View: 1529
Download and Read
Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives

Author: Donald B. Rubin
Publisher: John Wiley & Sons
ISBN: 9780470090435
Size: 35.33 MB
Format: PDF, Mobi
View: 705
Download and Read
This book brings together a collection of articles onstatistical methods relating to missing data analysis, includingmultiple imputation, propensity scores, instrumental variables, andBayesian inference. Covering new research topicsand real-world examples which do not feature in manystandard texts. The book is dedicated to Professor Don Rubin(Harvard). Don Rubin has made fundamental contributions tothe study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both researchand applications. Adopts a pragmatic approach to describing a wide range ofintermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensityscores, instrumental variables and Bayesian inference. Includes a number of applications from the social and healthsciences. Edited and authored by highly respected researchers in thearea.

Bayesian Models For Categorical Data

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470092386
Size: 19.42 MB
Format: PDF, ePub
View: 3464
Download and Read
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

Bayesian Modeling Using Winbugs

Author: Ioannis Ntzoufras
Publisher: John Wiley & Sons
ISBN: 1118210352
Size: 23.19 MB
Format: PDF, Kindle
View: 5099
Download and Read
A hands-on introduction to the principles of Bayesian modelingusing WinBUGS Bayesian Modeling Using WinBUGS provides an easilyaccessible introduction to the use of WinBUGS programmingtechniques in a variety of Bayesian modeling settings. The authorprovides an accessible treatment of the topic, offering readers asmooth introduction to the principles of Bayesian modeling withdetailed guidance on the practical implementation of keyprinciples. The book begins with a basic introduction to Bayesian inferenceand the WinBUGS software and goes on to cover key topics,including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use ofboth WinBUGS as well as R software to apply the discussedtechniques. Exercises at the end of each chapter allow readers totest their understanding of the presented concepts and all datasets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory andstatistics, Bayesian Modeling Using WinBUGS serves as anexcellent book for courses on Bayesian statistics at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners in the fields ofstatistics, actuarial science, medicine, and the social scienceswho use WinBUGS in their everyday work.

A First Course In Bayesian Statistical Methods

Author: Peter D. Hoff
Publisher: Springer Science & Business Media
ISBN: 9780387924076
Size: 69.27 MB
Format: PDF, Kindle
View: 6608
Download and Read
A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.

Applied Bayesian Statistics

Author: Mary Kathryn Cowles
Publisher: Springer Science & Business Media
ISBN: 1461456967
Size: 48.24 MB
Format: PDF, Kindle
View: 588
Download and Read
This book is based on over a dozen years teaching a Bayesian Statistics course. The material presented here has been used by students of different levels and disciplines, including advanced undergraduates studying Mathematics and Statistics and students in graduate programs in Statistics, Biostatistics, Engineering, Economics, Marketing, Pharmacy, and Psychology. The goal of the book is to impart the basics of designing and carrying out Bayesian analyses, and interpreting and communicating the results. In addition, readers will learn to use the predominant software for Bayesian model-fitting, R and OpenBUGS. The practical approach this book takes will help students of all levels to build understanding of the concepts and procedures required to answer real questions by performing Bayesian analysis of real data. Topics covered include comparing and contrasting Bayesian and classical methods, specifying hierarchical models, and assessing Markov chain Monte Carlo output. Kate Cowles taught Suzuki piano for many years before going to graduate school in Biostatistics. Her research areas are Bayesian and computational statistics, with application to environmental science. She is on the faculty of Statistics at The University of Iowa.

Contemporary Bayesian Econometrics And Statistics

Author: John Geweke
Publisher: John Wiley & Sons
ISBN: 0471744727
Size: 17.11 MB
Format: PDF, ePub, Docs
View: 1278
Download and Read
Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding ofBayesian analysis that is grounded in the theory of inference andoptimal decision making. Contemporary Bayesian Econometrics andStatistics provides readers with state-of-the-art simulationmethods and models that are used to solve complex real-worldproblems. Armed with a strong foundation in both theory andpractical problem-solving tools, readers discover how to optimizedecision making when faced with problems that involve limited orimperfect data. The book begins by examining the theoretical and mathematicalfoundations of Bayesian statistics to help readers understand howand why it is used in problem solving. The author then describeshow modern simulation methods make Bayesian approaches practicalusing widely available mathematical applications software. Inaddition, the author details how models can be applied to specificproblems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decadeof classroom experience, and readers will find the author'sapproach very engaging and accessible. There are nearly 200examples and exercises to help readers see how effective use ofBayesian statistics enables them to make optimal decisions. MATLAB?and R computer programs are integrated throughout the book. Anaccompanying Web site provides readers with computer code for manyexamples and datasets. This publication is tailored for research professionals who useeconometrics and similar statistical methods in their work. Withits emphasis on practical problem solving and extensive use ofexamples and exercises, this is also an excellent textbook forgraduate-level students in a broad range of fields, includingeconomics, statistics, the social sciences, business, and publicpolicy.

Introduction To Bayesian Statistics

Author: William M. Bolstad
Publisher: John Wiley & Sons
ISBN: 1118593227
Size: 56.93 MB
Format: PDF, ePub, Mobi
View: 1089
Download and Read
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.

Subjective And Objective Bayesian Statistics

Author: S. James Press
Publisher: John Wiley & Sons
ISBN: 0470317949
Size: 37.90 MB
Format: PDF
View: 5541
Download and Read
Shorter, more concise chapters provide flexible coverage of the subject. Expanded coverage includes: uncertainty and randomness, prior distributions, predictivism, estimation, analysis of variance, and classification and imaging. Includes topics not covered in other books, such as the de Finetti Transform. Author S. James Press is the modern guru of Bayesian statistics.