Download applied bayesian modelling wiley series in probability and statistics in pdf or read applied bayesian modelling wiley series in probability and statistics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get applied bayesian modelling wiley series in probability and statistics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Applied Bayesian Modelling

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 1118895061
Size: 66.46 MB
Format: PDF, ePub
View: 7053
Download and Read
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Applied Bayesian Modelling

Author: Peter Congdon
Publisher: Wiley
ISBN: 9780471486954
Size: 35.65 MB
Format: PDF, Docs
View: 6764
Download and Read
The use of Bayesian statistics has grown significantly in recent years, and will undoubtedly continue to do so. Applied Bayesian Modelling is the follow-up to the author’s best selling book, Bayesian Statistical Modelling, and focuses on the potential applications of Bayesian techniques in a wide range of important topics in the social and health sciences. The applications are illustrated through many real-life examples and software implementation in WINBUGS – a popular software package that offers a simplified and flexible approach to statistical modelling. The book gives detailed explanations for each example – explaining fully the choice of model for each particular problem. The book · Provides a broad and comprehensive account of applied Bayesian modelling. · Describes a variety of model assessment methods and the flexibility of Bayesian prior specifications. · Covers many application areas, including panel data models, structural equation and other multivariate structure models, spatial analysis, survival analysis and epidemiology. · Provides detailed worked examples in WINBUGS to illustrate the practical application of the techniques described. All WINBUGS programs are available from an ftp site. The book provides a good introduction to Bayesian modelling and data analysis for a wide range of people involved in applied statistical analysis, including researchers and students from statistics, and the health and social sciences. The wealth of examples makes this book an ideal reference for anyone involved in statistical modelling and analysis.

Applied Bayesian Modeling And Causal Inference From Incomplete Data Perspectives

Author: Donald B. Rubin
Publisher: John Wiley & Sons
ISBN: 9780470090435
Size: 18.44 MB
Format: PDF
View: 4410
Download and Read
This book brings together a collection of articles onstatistical methods relating to missing data analysis, includingmultiple imputation, propensity scores, instrumental variables, andBayesian inference. Covering new research topicsand real-world examples which do not feature in manystandard texts. The book is dedicated to Professor Don Rubin(Harvard). Don Rubin has made fundamental contributions tothe study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both researchand applications. Adopts a pragmatic approach to describing a wide range ofintermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensityscores, instrumental variables and Bayesian inference. Includes a number of applications from the social and healthsciences. Edited and authored by highly respected researchers in thearea.

Bayesian Statistical Modelling

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470035935
Size: 28.67 MB
Format: PDF, Docs
View: 7096
Download and Read
Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Bayesian Models For Categorical Data

Author: Peter Congdon
Publisher: John Wiley & Sons
ISBN: 0470092386
Size: 14.16 MB
Format: PDF, ePub, Docs
View: 2492
Download and Read
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.

Bayesian Statistics

Author: S. James Press
Publisher: John Wiley & Sons Inc
ISBN:
Size: 61.35 MB
Format: PDF, ePub
View: 7006
Download and Read
An introduction to Bayesian statistics, with emphasis on interpretation of theory, and application of Bayesian ideas to practical problems. First part covers basic issues and principles, such as subjective probability, Bayesian inference and decision making, the likelihood principle, predictivism, and numerical methods of approximating posterior distributions, and includes a listing of Bayesian computer programs. Second part is devoted to models and applications, including univariate and multivariate regression models, the general linear model, Bayesian classification and discrimination, and a case study of how disputed authorship of some of the Federalist Papers was resolved via Bayesian analysis. Includes biographical material on Thomas Bayes, and a reproduction of Bayes's original essay. Contains exercises.

Bayesian Statistics And Marketing

Author: Peter E. Rossi
Publisher: John Wiley & Sons
ISBN: 0470863684
Size: 53.50 MB
Format: PDF, Mobi
View: 3827
Download and Read
The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.

Bayesian Modeling Using Winbugs

Author: Ioannis Ntzoufras
Publisher: John Wiley & Sons
ISBN: 1118210352
Size: 50.45 MB
Format: PDF, Mobi
View: 6229
Download and Read
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.

Bayesian Analysis Of Stochastic Process Models

Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Size: 73.49 MB
Format: PDF, Kindle
View: 4433
Download and Read
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Bayesian Analysis For The Social Sciences

Author: Simon Jackman
Publisher: John Wiley & Sons
ISBN: 9780470686638
Size: 65.37 MB
Format: PDF, ePub, Docs
View: 3587
Download and Read
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.