Download applied mathematics for the analysis of biomedical data models methods and matlab in pdf or read applied mathematics for the analysis of biomedical data models methods and matlab in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get applied mathematics for the analysis of biomedical data models methods and matlab in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Applied Mathematics For The Analysis Of Biomedical Data

Author: Peter J. Costa
Publisher: John Wiley & Sons
ISBN: 1119269490
Size: 80.28 MB
Format: PDF, ePub
View: 2342
Download and Read
Features a practical approach to the analysis of biomedical data via mathematical methods and provides a MATLAB® toolbox for the collection, visualization, and evaluation of experimental and real-life data Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® presents a practical approach to the task that biological scientists face when analyzing data. The primary focus is on the application of mathematical models and scientific computing methods to provide insight into the behavior of biological systems. The author draws upon his experience in academia, industry, and government–sponsored research as well as his expertise in MATLAB to produce a suite of computer programs with applications in epidemiology, machine learning, and biostatistics. These models are derived from real–world data and concerns. Among the topics included are the spread of infectious disease (HIV/AIDS) through a population, statistical pattern recognition methods to determine the presence of disease in a diagnostic sample, and the fundamentals of hypothesis testing. In addition, the author uses his professional experiences to present unique case studies whose analyses provide detailed insights into biological systems and the problems inherent in their examination. The book contains a well-developed and tested set of MATLAB functions that act as a general toolbox for practitioners of quantitative biology and biostatistics. This combination of MATLAB functions and practical tips amplifies the book’s technical merit and value to industry professionals. Through numerous examples and sample code blocks, the book provides readers with illustrations of MATLAB programming. Moreover, the associated toolbox permits readers to engage in the process of data analysis without needing to delve deeply into the mathematical theory. This gives an accessible view of the material for readers with varied backgrounds. As a result, the book provides a streamlined framework for the development of mathematical models, algorithms, and the corresponding computer code. In addition, the book features: Real–world computational procedures that can be readily applied to similar problems without the need for keen mathematical acumen Clear delineation of topics to accelerate access to data analysis Access to a book companion website containing the MATLAB toolbox created for this book, as well as a Solutions Manual with solutions to selected exercises Applied Mathematics for the Analysis of Biomedical Data: Models, Methods, and MATLAB® is an excellent textbook for students in mathematics, biostatistics, the life and social sciences, and quantitative, computational, and mathematical biology. This book is also an ideal reference for industrial scientists, biostatisticians, product development scientists, and practitioners who use mathematical models of biological systems in biomedical research, medical device development, and pharmaceutical submissions.

Computational Mathematics

Author: Robert E. White
Publisher: CRC Press
ISBN: 1135440328
Size: 68.98 MB
Format: PDF, ePub
View: 7359
Download and Read
Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white. This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether used as an undergraduate textbook, for self-study, or for reference, it builds the foundation you need to make numerical modeling and simulation integral parts of your investigational toolbox.

Mathematical Models In Biology

Author: Elizabeth S. Allman
Publisher: Cambridge University Press
ISBN: 9780521525862
Size: 17.61 MB
Format: PDF, ePub
View: 3320
Download and Read
Linear and non-linear models of populations, molecular evolution, phylogenetic tree construction, genetics, and infectious diseases are presented with minimal prerequisites.

Explorations Of Mathematical Models In Biology With Matlab

Author: Mazen Shahin
Publisher: John Wiley & Sons
ISBN: 1118548531
Size: 45.71 MB
Format: PDF
View: 3154
Download and Read
Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.

Nonlinear Inverse Problems In Imaging

Author: Jin Keun Seo
Publisher: John Wiley & Sons
ISBN: 1118478150
Size: 80.21 MB
Format: PDF
View: 4461
Download and Read
This book provides researchers and engineers in the imaging field with the skills they need to effectively deal with nonlinear inverse problems associated with different imaging modalities, including impedance imaging, optical tomography, elastography, and electrical source imaging. Focusing on numerically implementable methods, the book bridges the gap between theory and applications, helping readers tackle problems in applied mathematics and engineering. Complete, self-contained coverage includes basic concepts, models, computational methods, numerical simulations, examples, and case studies. Provides a step-by-step progressive treatment of topics for ease of understanding. Discusses the underlying physical phenomena as well as implementation details of image reconstruction algorithms as prerequisites for finding solutions to non linear inverse problems with practical significance and value. Includes end of chapter problems, case studies and examples with solutions throughout the book. Companion website will provide further examples and solutions, experimental data sets, open problems, teaching material such as PowerPoint slides and software including MATLAB m files. Essential reading for Graduate students and researchers in imaging science working across the areas of applied mathematics, biomedical engineering, and electrical engineering and specifically those involved in nonlinear imaging techniques, impedance imaging, optical tomography, elastography, and electrical source imaging

Biomedical Image Analysis Recipes In Matlab

Author: Constantino Carlos Reyes-Aldasoro
Publisher: John Wiley & Sons
ISBN: 1118657551
Size: 18.80 MB
Format: PDF, Kindle
View: 7253
Download and Read
As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of 'recipes' or solved examples that show how specific techniques are applied to a biomedical experiments like Western Blots, Histology, Scratch Wound Assays and Fluoresence. Each recipe begins with simple techniques that gradually advance in complexity. Part III presents some advanced techniques for the generation of publication quality figures. The book does not assume any computational or mathematical expertise. A practical, clearly-written introduction to biomedical image analysis that provides the tools for life scientists and engineers to use when solving problems in their own laboratories. Presents the basic concepts of MATLAB® software and uses it throughout to show how it can execute flexible and powerful image analysis programs tailored to the specific needs of the problem. Within the context of four biomedical cases, it shows algorithms and techniques as series of 'recipes', or solved examples that show how a particular technique is applied in a specific experiment. Companion website containing example datasets, MATLAB® files and figures from the book.

Applied Stochastic Processes And Control For Jump Diffusions

Author: Floyd B. Hanson
Publisher: SIAM
ISBN: 9780898718638
Size: 37.49 MB
Format: PDF, ePub, Docs
View: 5585
Download and Read
This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.