## Applied Nonparametric Statistical Methods Fourth Edition

Author: Peter Sprent
Publisher: CRC Press
ISBN: 1439894019
Size: 70.25 MB
Format: PDF, Docs
View: 7461

While preserving the clear, accessible style of previous editions, Applied Nonparametric Statistical Methods, Fourth Edition reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets. Reorganized and with additional material, this edition begins with a brief summary of some relevant general statistical concepts and an introduction to basic ideas of nonparametric or distribution-free methods. Designed experiments, including those with factorial treatment structures, are now the focus of an entire chapter. The text also expands coverage on the analysis of survival data and the bootstrap method. The new final chapter focuses on important modern developments, such as large sample methods and computer-intensive applications. Keeping mathematics to a minimum, this text introduces nonparametric methods to undergraduate students who are taking either mainstream statistics courses or statistics courses within other disciplines. By giving the proper attention to data collection and the interpretation of analyses, it provides a full introduction to nonparametric methods.

## Essential Statistics Fourth Edition

Author: D.G. Rees
Publisher: CRC Press
ISBN: 9781584880073
Size: 35.99 MB
Format: PDF
View: 3500

An introductory text for students taking a first course in statistics-in fields as diverse as engineering, business, chemistry, and biology-Essential Statistics: Fourth Edition thoroughly updates and enhances the hugely successful third edition. It presents new information on modern statistical techniques such as Analysis of Variance (ANOVA), and software such as MINITABTM for WINDOWS. An experienced former lecturer, the author communicates to students in his trademark easy-to-follow style. Keeping complex mathematical theory to a minimum, Rees presents a wealth of fully explained worked examples throughout the text. In addition, the end-of-chapter Worksheets relate to a variety of fields-enabling students to see the relevance of the numerous methods to their study areas. Essential Statistics: Fourth Edition emphasizes the principles and assumptions underlying the statistical methods, thus providing the tools needed for students to use and interpret statistical data effectively.

## Applied Stochastic Modelling Second Edition

Author: Byron J.T. Morgan
Publisher: CRC Press
ISBN: 1420011650
Size: 51.37 MB
Format: PDF, ePub
View: 2874

Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB® and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.

## Nonparametric Methods In Statistics With Sas Applications

Author: Olga Korosteleva
Publisher: CRC Press
ISBN: 1466580631
Size: 66.35 MB
Format: PDF, Docs
View: 2371

Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods. The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation. Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.

## Bayesian Methods For Data Analysis Third Edition

Publisher: CRC Press
ISBN: 9781584886983
Size: 18.15 MB
Format: PDF
View: 175

Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

## The Analysis Of Time Series

Author: Chris Chatfield
Publisher: CRC Press
ISBN: 9780203491683
Size: 44.48 MB
Format: PDF, ePub, Docs
View: 5583

## Extending The Linear Model With R

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 9780203492284
Size: 77.52 MB
Format: PDF, Mobi
View: 3170

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

## Survival Analysis Using S

Author: Mara Tableman
Publisher: CRC Press
ISBN: 9780203501412
Size: 14.39 MB
Format: PDF, Mobi
View: 1838

Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.

## Markov Chain Monte Carlo

Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9781584885870
Size: 58.88 MB
Format: PDF, Kindle
View: 3382

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

## Introduction To Probability With R

Author: Kenneth Baclawski
Publisher: Chapman and Hall/CRC
ISBN: 9781420065213
Size: 61.38 MB
Format: PDF, ePub
View: 6102

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.