Download applied univariate bivariate and multivariate statistics in pdf or read applied univariate bivariate and multivariate statistics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get applied univariate bivariate and multivariate statistics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Applied Univariate Bivariate And Multivariate Statistics

Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1118632338
Size: 29.82 MB
Format: PDF
View: 4509
Download and Read
Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Blending statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations.--

Spss Data Analysis For Univariate Bivariate And Multivariate Statistics

Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 111946580X
Size: 30.58 MB
Format: PDF, Mobi
View: 6410
Download and Read
Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.

Applied Multivariate Statistics With R

Author: Daniel Zelterman
Publisher: Springer
ISBN: 3319140930
Size: 20.80 MB
Format: PDF, ePub, Docs
View: 7726
Download and Read
This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the Behavior Risk Factor Surveillance System, discussing both the shortcomings of the data as well as useful analyses. The text avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.

Spss 21

Author: Felix Brosius
Publisher: MITP-Verlags GmbH & Co. KG
ISBN: 382669063X
Size: 10.92 MB
Format: PDF, Kindle
View: 5828
Download and Read
SPSS ist ein umfangreiches Programm zur statistischen Datenanalyse, das inzwischen in der Version 21 vorliegt. In dem Buch wird das Programm umfassend beschrieben von der Bedienung der Oberfläche über die Dateneingabe bis hin zur Durchführung und Interpretation statistischer Analysen sowie dem Erstellen von Grafiken.

Applied Multivariate Analysis

Author: Neil H. Timm
Publisher: Springer Science & Business Media
ISBN: 0387953477
Size: 30.80 MB
Format: PDF, ePub, Docs
View: 2929
Download and Read
This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.

Applied Statistics

Author: Rebecca M. Warner
Publisher: SAGE
ISBN: 0761927727
Size: 21.21 MB
Format: PDF, ePub, Docs
View: 2165
Download and Read
With an approach that does not require formal mathematics (equations are accompanied by verbal explanations), this textbook provides a clear introduction to widely used topics in multivariate statistics, including Multiple Regression, Discriminant Analysis, MANOVA, Factor Analysis, and Binary Logistic Regression. Each chapter presents a complete empirical research example to illustrate the application of a specific method, such as Multiple Regression. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.

Applied Statistics From Bivariate Through Multivariate Techniques

Author: Rebecca M. Warner
Publisher: SAGE
ISBN: 141299134X
Size: 68.81 MB
Format: PDF, Kindle
View: 7240
Download and Read
Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.

Statistik Workshop F R Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 48.68 MB
Format: PDF, Kindle
View: 3788
Download and Read
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.