Download aquatic organic matter fluorescence in pdf or read aquatic organic matter fluorescence in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get aquatic organic matter fluorescence in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Aquatic Organic Matter Fluorescence

Author: Paula Coble
Publisher: Cambridge University Press
ISBN: 0521764610
Size: 65.30 MB
Format: PDF, ePub
View: 4322
Download and Read
Core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.

Biogeochemistry Of Marine Dissolved Organic Matter

Author: Dennis A. Hansell
Publisher: Academic Press
ISBN: 0124071538
Size: 70.42 MB
Format: PDF, Kindle
View: 1898
Download and Read
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. Features up-to-date knowledge of DOM, including five new chapters The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea Includes chapters that address inputs from freshwater terrestrial DOM

Photobiogeochemistry Of Organic Matter

Author: Khan M.G. Mostofa
Publisher: Springer Science & Business Media
ISBN: 3642322239
Size: 73.12 MB
Format: PDF, ePub, Mobi
View: 5675
Download and Read
Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO•; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results.

Aquatic Ecosystems Interactivity Of Dissolved Organic Matter

Author:
Publisher: Elsevier
ISBN: 008052754X
Size: 19.92 MB
Format: PDF, ePub, Docs
View: 5390
Download and Read
Aquatic Ecosystems explains the interplay between various movements of matter and energy through ecosystems mediated by Dissolved Organic Matter. This book provides information on how much DOM there is in a particular aquatic ecosystem and where it originates. It explains whether the DOM composition varies from time to time and place to place. It also details how DOM becomes incorporated into microbial food webs, and gives a better, clarifying, understanding to its significance of DOM. There are many ways to study DOM and this book focuses on several central questions: How much DOM is there in a particular aquatic ecosytem? Where does it come from? Does the composition of the DOM vary from time to time and place to palce? How does DOM become incorporated into microbial food webs, which are the basis of plant, invertebrate and vertebrate food webs? How can the answers to these and other questions about DOM be considered together so that a better understanding of the significance of DOM can emerge?

Linking Optical And Chemical Properties Of Dissolved Organic Matter In Natural Waters

Author: Christopher L. Osburn
Publisher: Frontiers Media SA
ISBN: 2889450813
Size: 69.99 MB
Format: PDF, Docs
View: 3642
Download and Read
A substantial increase in the number of studies using the optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) as a proxy for its chemical properties in estuaries and the coastal and open ocean has occurred during the last decade. We are making progress on finding the actual chemical compounds or phenomena responsible for DOM’s optical properties. Ultrahigh resolution mass spectrometry, in particular, has made important progress in making the key connections between optics and chemistry. But serious questions remain and the last major special issue on DOM optics and chemistry occurred nearly 10 years ago. Controversies remain from the non-specific optical properties of DOM that are not linked to discrete sources, and sometimes provide conflicting information. The use of optics, which is relatively easier to employ in synoptic and high resolution sampling to determine chemistry, is a critical connection to make and can lead to major advances in our understanding of organic matter cycling in all aquatic ecosystems. The contentions and controversies raised by our poor understanding of the linkages between optics and chemistry of DOM are bottlenecks that need to be addressed and overcome.

Refractory Organic Substances In The Environment

Author: Fritz Hartmann Frimmel
Publisher: John Wiley & Sons
ISBN: 3527614443
Size: 15.47 MB
Format: PDF, ePub, Mobi
View: 6987
Download and Read
Refractory organic substances (ROS) are an essential part of the biogeochemical carbon cycle. Wherever there is life on earth, there will also be ROS in the form of poorly biodegradable leftovers of organisms and as a source for new life. Furthermore, it is now beyond doubt that ROS are closely related to the carbon intensity identified as one of the driving forces in the dynamics of green house gas emission, such that ROS play a key role in sustainable development. 'Refractory Organic Substances in the Environment' provides the results of six years of top-priority research, funded by the Deutsche Forschungsgemeinschaft (DFG). This research program investigated the structure and function of ROS in different parts of the environment, from a chemical, physical, biological, and soil scientific point of view. It included the first systematic study of a set of reference samples from Central Europe, originating from a bog lake, soil seepage water, groundwater, and from the wastewaters of a brown coal processing plant and a secondary effluent. Thus, this work not only highlights the structural features obtained from the application of advanced analytical tools, but also the function in anthropogenically influenced aquatic systems and soils. Of special interest to students and researchers in life sciences.

Innovations In Wash Impact Measures

Author: Evan Thomas
Publisher: World Bank Publications
ISBN: 1464811989
Size: 55.38 MB
Format: PDF, Kindle
View: 3119
Download and Read
The new 2030 Agenda for Sustainable Development includes water, sanitation, and hygiene (WASH) at its core. A dedicated Sustainable Development Goal (SDG 6) declares a commitment to "ensure availability and sustainable management of water and sanitation for all." Monitoring progress toward this goal will be challenging: direct measures of water and sanitation service quality and use are either expensive or elusive. However, reliance on household surveys poses limitations and likely overstated progress during the Millennium Development Goal period. In Innovations in WASH Impact Measures: Water and Sanitation Measurement Technologies and Practices to Inform the Sustainable Development Goals, we review the landscape of proven and emerging technologies, methods, and approaches that can support and improve on the WASH indicators proposed for SDG target 6.1, "by 2030, achieve universal and equitable access to safe and affordable drinking water for all," and target 6.2, "by 2030, achieve access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations." Although some of these technologies and methods are readily available, other promising approaches require further field evaluation and cost reductions. Emergent technologies, methods, and data-sharing platforms are increasingly aligned with program impact monitoring. Improved monitoring of water and sanitation interventions may allow more cost-effective and measurable results. In many cases, technologies and methods allow more complete and impartial data in time to allow program improvements. Of the myriad monitoring and evaluation methods, each has its own advantages and limitations. Surveys, ethnographies, and direct observation give context to more continuous and objective electronic sensor data. Overall, combined methodologies can provide a more comprehensive and instructive depiction of WASH usage and help the international development community measure our progress toward reaching the SDG WASH goals.

Natural Organic Matter In Water

Author: Mika Sillanpää
Publisher: Butterworth-Heinemann
ISBN: 0128017198
Size: 41.66 MB
Format: PDF, ePub, Mobi
View: 2914
Download and Read
Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author’s years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. Covers conventional as well as advanced NOM removal methods Includes characterization methods of NOM Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods

Aquatic Biofilms

Author: Helena Guasch Anna M. Romani
Publisher: Caister Academic Press
ISBN: 1910190187
Size: 18.24 MB
Format: PDF, ePub
View: 695
Download and Read
Biofilms in aquatic ecosystems colonize various surfaces (sand, rocks, leaves) and play a key role in the environment. Aquatic biofilms supply energy and organic matter to the food chain, they are important in recycling organic matter and contribute to water quality. This book is a concise review of the current knowledge on aquatic biofilms with an emphasis on the characteristics and ecology of biofilms in natural ecosystems and a focus on biofilm applications linked to water pollution problems. The volume is divided into three sections: Biofilms Mode of Life; Biofilms and Pollution; and New Technologies using Biofilms. In the first section the aquatic biofilm mode of life is described and reviewed. Key aspects covered include the three-dimensional structure and cell to cell communication of biofilms, their dynamic prokaryotic diversity and their vital role in biogeochemical cycles. In the second part of the book the use of biofilms in water quality is comprehensively covered. Chapters discuss biofilms in water quality, environmental risk assessment, monitoring and ecotoxicological approaches. Further topics include biofilm development in sewage pipes and the potential for microbial transformations in these systems. The final section focuses on important examples of novel technologies based on biofilms for water treatment, including the biodegradation of pollutants, the application of bioelectrogenic biofilms, and the biofilm capacity for nitrogen removal. With contributions from ecologists, engineers and microbiologists this book presents scientists and technicians with up-to-date knowledge and a clear understanding of aquatic biofilms from different and complementary points of view. An essential reference book for anyone working with biofilms.