Download automated solution of differential equations by the finite element method lecture notes in computational science and engineering in pdf or read automated solution of differential equations by the finite element method lecture notes in computational science and engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get automated solution of differential equations by the finite element method lecture notes in computational science and engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Automated Solution Of Differential Equations By The Finite Element Method

Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Size: 27.46 MB
Format: PDF
View: 166
Download and Read
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

The Finite Element Method Theory Implementation And Applications

Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Size: 33.46 MB
Format: PDF, ePub
View: 5968
Download and Read
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Parallel Processing And Applied Mathematics

Author: Roman Wyrzykowski
Publisher: Springer
ISBN: 3319321498
Size: 67.91 MB
Format: PDF, Docs
View: 6396
Download and Read
This two-volume set LNCS 9573 and LNCS 9574 constitutes the refereed proceedings of the 11th International Conference of Parallel Processing and Applied Mathematics, PPAM 2015, held in Krakow, Poland, in September 2015.The 111 revised full papers presented in both volumes were carefully reviewed and selected from 196 submissions. The focus of PPAM 2015 was on models, algorithms, and software tools which facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications, including big data problems.

Software For Exascale Computing Sppexa 2013 2015

Author: Hans-Joachim Bungartz
Publisher: Springer
ISBN: 3319405284
Size: 24.44 MB
Format: PDF, ePub
View: 1261
Download and Read
The research and its outcomes presented in this collection focus on various aspects of high-performance computing (HPC) software and its development which is confronted with various challenges as today's supercomputer technology heads towards exascale computing. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The collection thereby highlights pioneering research findings as well as innovative concepts in exascale software development that have been conducted under the umbrella of the priority programme "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) and that have been presented at the SPPEXA Symposium, Jan 25-27 2016, in Munich. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.

Treatise On Geophysics

Author:
Publisher: Elsevier
ISBN: 0444538038
Size: 72.15 MB
Format: PDF
View: 5503
Download and Read
Treatise on Geophysics, Second Edition, is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science. Comprehensive and detailed coverage of all aspects of geophysics Fundamental and state-of-the-art discussions of all research topics Integration of topics into a coherent whole

Building Bridges Connections And Challenges In Modern Approaches To Numerical Partial Differential Equations

Author: Gabriel R. Barrenechea
Publisher: Springer
ISBN: 3319416405
Size: 39.14 MB
Format: PDF, ePub, Mobi
View: 1066
Download and Read
This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.

Euro Par 2015 Parallel Processing Workshops

Author: Sascha Hunold
Publisher: Springer
ISBN: 3319273086
Size: 21.92 MB
Format: PDF, ePub, Mobi
View: 1805
Download and Read
This book constitutes the thoroughly refereed post-conference proceedings of 12 workshops held at the 21st International Conference on Parallel and Distributed Computing, Euro-Par 2015, in Vienna, Austria, in August 2015. The 67 revised full papers presented were carefully reviewed and selected from 121 submissions. The volume includes papers from the following workshops: BigDataCloud: 4th Workshop on Big Data Management in Clouds - Euro-EDUPAR: First European Workshop on Parallel and Distributed Computing Education for Undergraduate Students - Hetero Par: 13th International Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms - LSDVE: Third Workshop on Large Scale Distributed Virtual Environments - OMHI: 4th International Workshop on On-chip Memory Hierarchies and Interconnects - PADAPS: Third Workshop on Parallel and Distributed Agent-Based Simulations - PELGA: Workshop on Performance Engineering for Large-Scale Graph Analytics - REPPAR: Second International Workshop on Reproducibility in Parallel Computing - Resilience: 8th Workshop on Resiliency in High Performance Computing in Clusters, Clouds, and Grids - ROME: Third Workshop on Runtime and Operating Systems for the Many Core Era - UCHPC: 8th Workshop on UnConventional High Performance Computing - and VHPC: 10th Workshop on Virtualization in High-Performance Cloud Computing.

Solving Pdes In Python

Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319524623
Size: 23.49 MB
Format: PDF, Docs
View: 2417
Download and Read
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Finite And Boundary Element Tearing And Interconnecting Solvers For Multiscale Problems

Author: Clemens Pechstein
Publisher: Springer Science & Business Media
ISBN: 3642235883
Size: 53.75 MB
Format: PDF, Kindle
View: 7362
Download and Read
Tearing and interconnecting methods, such as FETI, FETI-DP, BETI, etc., are among the most successful domain decomposition solvers for partial differential equations. The purpose of this book is to give a detailed and self-contained presentation of these methods, including the corresponding algorithms as well as a rigorous convergence theory. In particular, two issues are addressed that have not been covered in any monograph yet: the coupling of finite and boundary elements within the tearing and interconnecting framework including exterior problems, and the case of highly varying (multiscale) coefficients not resolved by the subdomain partitioning. In this context, the book offers a detailed view to an active and up-to-date area of research.