Download biology and culture of asian seabass lates calcarifer in pdf or read biology and culture of asian seabass lates calcarifer in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get biology and culture of asian seabass lates calcarifer in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Biology And Culture Of Asian Seabass Lates Calcarifer

Author: Dean R. Jerry
Publisher: CRC Press
ISBN: 1482208083
Size: 16.84 MB
Format: PDF, ePub, Mobi
View: 3741
Download and Read
This book covers the biology, ecology, genetics and aquaculture of the Asian Seabass or barramundi (Lates calcarifer), a commercially and recreationally valuable species. It brings together in the one place reviews written by world experts in Asian seabass taxonomy, genetics, nutrition, ecology, aquaculture, reproductive and developmental biology, climate change impacts, harvest quality and health management.

Tropical Mariculture

Author: Sena S. De Silva
Publisher: Academic Press
ISBN: 0080543308
Size: 78.15 MB
Format: PDF
View: 7647
Download and Read
Tropical Mariculture takes an in-depth look at developmental activities in a growing industry striving towards sustainability and environmental integrity. All of the contributors to this book have considerable experience and expertise in the field of tropical mariculture, and this is the first book to bring expert contributions together. The topics covered are wide and varied, ranging from general issues such as the impact of mariculture on coastal ecosystems to genetic improvement of cultured marine species, as well as the specifics of breeding selected marine species of current importance, such as groupers and sea bass. Significant coverage is also given to the problems of larval rearing in inland aquaculture as well as the demands of water- and land-based resources in a tropical environment. This book will be essential for everyone working in and researching tropical mariculture. Key Features * Looks at developmental activities in tropical mariculture * All of the contributors are experts in the field * Covers specific breeding problems and larval rearing * Studies the environmental impact of inland aquacultural activities * Provides detailed examples of cultivated species in the tropics * Compiles mariculture strategies and discusses example species * First book to give an overview of tropical mariculture

Advances In Marine And Brackishwater Aquaculture

Author: Santhanam Perumal
Publisher: Springer
ISBN: 8132222717
Size: 41.94 MB
Format: PDF, ePub, Mobi
View: 1463
Download and Read
This book compiles the latest findings in the field of marine and brackishwater aquaculture. It covers significant topics such as techniques of culture of live feeds (microalgae, rotifer, Artemia, marine copepod & polychaetes), while also highlighting vital themes like the culture and applications of free and marine sponge associated microbial probiotics, controlled breeding, seed production and culture of commercially important fin and shell fishes. Moreover, the book focuses on the breeding and culture of marine ornamental fishes, sea cucumber and sea urchin and discusses seaweeds culture, aqua feed formulation and nutrition, water quality management in hatchery and grow-out culture systems, fish disease diagnosis and health management and cryopreservation of fish gametes for sustainable aquaculture practices, all from a multidimensional perspective. The global fish production was 154 million tonnes in 2011 which more or less consisted of capture and culture fisheries (FAO, 2012). Roughly 80% of this is from inland-freshwater aquaculture and the remainder from capture fisheries in the marine and brackishwater sector. However, marine and brackishwater catches have recently begun to diminish due to overexploitation, climate change and pollution. The UNEP report affirmed that if the world remains on its current course of overfishing, by 2050, the ocean fish stock could become extinct or no longer commercially viable to exploit. In these circumstances, aquaculture is considered to be a promising sector to fulfill our future protein requirement. However, brackishwater and marine fish production now face serious challenges due to e.g. lack of quality fish seeds, feeds, poor water quality management and diseases. Fisheries and aquaculture sectors play a vital role as potential sources of nutritional security and food safety around the globe. Fish food is rich in protein, vitamins, phosphorous, calcium, zinc, selenium etc. In addition, fish contains omega-3 fatty acids, which help to prevent cardiovascular diseases. Fish food can also provide several health benefits to consumers. The omega 3 fatty acids found in fish can reduce the levels of LDL cholesterol (the “bad” cholesterol) and increase the HDL levels (the “good” cholesterol). Research conducted in Australia has proved that fish consumption can be used to cure hypertension and obesity. It is also reported that people who ate more fish were less prone to asthma and were able to breathe more easily. Omega 3 fish oil or fish consumption can help to prevent three of the most common forms of cancer: breast cancer, colon and prostate cancer. The omega 3 fatty acids present in fish or fish oil induce faster hair growth and prevent hair loss. Since most varieties of fish are rich in protein, eating fish helps to keep hair healthy. Furthermore, fish or fish oil helps in improving the condition of dry skin, giving it a healthy glow. It is useful in treating various skin problems such as eczema, psoriasis, itching, redness of skin, skin lesions and rashes. It is well known that eating fish improves vision and prevents Alzheimer’s and type-2 diabetes, and can combat arthritis. Further, fish oil or fish is good for pregnant women, as the DHA present in it helps in the development of the baby’s eyes and brain. It helps to avoid premature births, low birth weights and miscarriages. In addition, it is widely known that fish can be a good substitute for pulses in cereal-based diets for the poor. The global fish production was roughly 154 million tonnes in 2011 (FAO, 2012). It is estimated that by 2020 global fish requirements will be over 200 million tonnes; as such, innovative technological improvements are called for in order to improve the production and productivity in fisheries. In this context, this book provides valuable information for academics, scientists, researchers, government officials and farmers on innovative technological advances for sustainable fish production using aquaculture methods. The book identifies the main issues and trends in marine and brackishwater aquaculture from a global perspective in general and in the Indian context in particular. It includes 23 chapters written by prominent researchers from various institutes and universities across India, who address the latest aquaculture technologies with distinctive approaches to support academics, researchers and graduates in the fields of Fisheries, Aquaculture, Marine Science, Marine Biology, Marine Biotechnology, Zoology and Agricultural Sciences. Our thanks go to our contributors; we are confident that all readers will immensely benefit from their valued expertise in the field of marine and brackishwater aquaculture.

Basic And Applied Zooplankton Biology

Author: Perumal Santhanam
Publisher: Springer
ISBN: 9811079536
Size: 21.88 MB
Format: PDF, ePub, Mobi
View: 2787
Download and Read
The coastal and ocean ecosystem is a significant feature of our planet and provides a source of food for much of life on Earth. Millions of species have been, and are still being discovered in the world’s oceans. Among these zooplankton serve as secondary producers and are significant as they form pelagic food links and act as indicators of water masses. They constitute the largest and most reliable source of protein for most of the ocean’s fishes. As such, their absence or depletion often affects fishery. In many countries, the decline in fishery has been attributed to reduced plankton populations. Furthermore, trillions of tiny copepods produce countless faecal pellets contributing greatly to the marine snow and therefore accelerating the flow of nutrients and minerals from the surface waters to the seabed. They are phylogenetically highly successful groups in terms of phylogenetic age, number of living species and success of adaptive radiation. A study of the basic and applied aspects of zooplankton would provide an index of the fishery potential and applications, offering insights into ocean ecology to safeguard food supplies and livelihoods of the millions of people living in coastal areas. For this reason, we need to understand all the facets of zooplankton as well as their interactions with atmosphere and other life forms, including human. In this context, this book discusses the basic and applied aspects of zooplankton, especially taxonomy, mosquitocidal activity, culture, analysis of nutritional, pigments and enzyme profile, preservation of copepods eggs, bioenrichment of zooplankton and application of zooplankton in sustainable aquaculture production, focusing on novel biofloc-copefloc technologies, and the impact of acidification and microplastics on zooplankton. Offering a comprehensive overview of the current issues and developments in the field of environmental and commercial applications, this book is a valuable resource for researchers, aquaculturists, environmental mangers wanting to understand the importance of zooplankton and develop technologies for the sustainable production of fish and other commodities to provide food and livelihoods for mankind.

Genomics In Aquaculture To Better Understand Species Biology And Accelerate Genetic Progress

Author: José Manuel Yáñez
Publisher: Frontiers Media SA
ISBN: 2889199576
Size: 33.76 MB
Format: PDF, ePub, Mobi
View: 3351
Download and Read
From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits.