Download building machine learning systems with python second edition in pdf or read building machine learning systems with python second edition in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get building machine learning systems with python second edition in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Building Machine Learning Systems With Python Second Edition

Author: Luis Pedro Coelho
Publisher: Packt Publishing Ltd
ISBN: 178439288X
Size: 66.42 MB
Format: PDF, ePub, Mobi
View: 5661
Download and Read
This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

Building Machine Learning Systems With Python

Author: Willi Richert
Publisher: Packt Publishing Ltd
ISBN: 1782161414
Size: 10.33 MB
Format: PDF, ePub, Mobi
View: 4781
Download and Read
This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.

Learning Data Mining With Python

Author: Robert Layton
Publisher: Packt Publishing Ltd
ISBN: 178712956X
Size: 73.61 MB
Format: PDF, Mobi
View: 4990
Download and Read
Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models. About This Book Use a wide variety of Python libraries for practical data mining purposes. Learn how to find, manipulate, analyze, and visualize data using Python. Step-by-step instructions on data mining techniques with Python that have real-world applications. Who This Book Is For If you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected. What You Will Learn Apply data mining concepts to real-world problems Predict the outcome of sports matches based on past results Determine the author of a document based on their writing style Use APIs to download datasets from social media and other online services Find and extract good features from difficult datasets Create models that solve real-world problems Design and develop data mining applications using a variety of datasets Perform object detection in images using Deep Neural Networks Find meaningful insights from your data through intuitive visualizations Compute on big data, including real-time data from the internet In Detail This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK. You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now. With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations. Style and approach This book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner.

Designing Machine Learning Systems With Python

Author: David Julian
Publisher: Packt Publishing Ltd
ISBN: 1785880780
Size: 20.90 MB
Format: PDF, ePub, Docs
View: 3273
Download and Read
Design efficient machine learning systems that give you more accurate results About This Book Gain an understanding of the machine learning design process Optimize machine learning systems for improved accuracy Understand common programming tools and techniques for machine learning Develop techniques and strategies for dealing with large amounts of data from a variety of sources Build models to solve unique tasks Who This Book Is For This book is for data scientists, scientists, or just the curious. To get the most out of this book, you will need to know some linear algebra and some Python, and have a basic knowledge of machine learning concepts. What You Will Learn Gain an understanding of the machine learning design process Optimize the error function of your machine learning system Understand the common programming patterns used in machine learning Discover optimizing techniques that will help you get the most from your data Find out how to design models uniquely suited to your task In Detail Machine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles. There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more. Style and approach This easy-to-follow, step-by-step guide covers the most important machine learning models and techniques from a design perspective.

Python Machine Learning

Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 1783555149
Size: 80.98 MB
Format: PDF, ePub
View: 6136
Download and Read
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Introduction To Machine Learning With Python

Author: Andreas C. Müller
Publisher: "O'Reilly Media, Inc."
ISBN: 1449369898
Size: 28.57 MB
Format: PDF
View: 729
Download and Read
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills

Mastering Machine Learning With Scikit Learn

Author: Gavin Hackeling
Publisher: Packt Publishing Ltd
ISBN: 1783988371
Size: 45.92 MB
Format: PDF, Kindle
View: 7565
Download and Read
If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

Machine Learning With R

Author: Brett Lantz
Publisher: Packt Publishing Ltd
ISBN: 1782162151
Size: 56.37 MB
Format: PDF, ePub
View: 4429
Download and Read
Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

Building Machine Learning Projects With Tensorflow

Author: Rodolfo Bonnin
Publisher: Packt Publishing Ltd
ISBN: 1786466821
Size: 72.52 MB
Format: PDF, Kindle
View: 2962
Download and Read
Engaging projects that will teach you how complex data can be exploited to gain the most insight About This Book Bored of too much theory on TensorFlow? This book is what you need! Thirteen solid projects and four examples teach you how to implement TensorFlow in production. This example-rich guide teaches you how to perform highly accurate and efficient numerical computing with TensorFlow It is a practical and methodically explained guide that allows you to apply Tensorflow's features from the very beginning. Who This Book Is For This book is for data analysts, data scientists, and researchers who want to increase the speed and efficiency of their machine learning activities and results. Anyone looking for a fresh guide to complex numerical computations with TensorFlow will find this an extremely helpful resource. This book is also for developers who want to implement TensorFlow in production in various scenarios. Some experience with C++ and Python is expected. What You Will Learn Load, interact, dissect, process, and save complex datasets Solve classification and regression problems using state of the art techniques Predict the outcome of a simple time series using Linear Regression modeling Use a Logistic Regression scheme to predict the future result of a time series Classify images using deep neural network schemes Tag a set of images and detect features using a deep neural network, including a Convolutional Neural Network (CNN) layer Resolve character recognition problems using the Recurrent Neural Network (RNN) model In Detail This book of projects highlights how TensorFlow can be used in different scenarios - this includes projects for training models, machine learning, deep learning, and working with various neural networks. Each project provides exciting and insightful exercises that will teach you how to use TensorFlow and show you how layers of data can be explored by working with Tensors. Simply pick a project that is in line with your environment and get stacks of information on how to implement TensorFlow in production. Style and approach This book is a practical guide to implementing TensorFlow in production. It explores various scenarios in which you could use TensorFlow and shows you how to use it in the context of real world projects. This will not only give you an upper hand in the field, but shows the potential for innovative uses of TensorFlow in your environment. This guide opens the door to second generation machine learning and numerical computation – a must-have for your bookshelf!

Python Machine Learning By Example

Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
ISBN: 178355312X
Size: 53.50 MB
Format: PDF, Kindle
View: 1933
Download and Read
Take tiny steps to enter the big world of data science through this interesting guide About This Book Learn the fundamentals of machine learning and build your own intelligent applications Master the art of building your own machine learning systems with this example-based practical guide Work with important classification and regression algorithms and other machine learning techniques Who This Book Is For This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed. What You Will Learn Exploit the power of Python to handle data extraction, manipulation, and exploration techniques Use Python to visualize data spread across multiple dimensions and extract useful features Dive deep into the world of analytics to predict situations correctly Implement machine learning classification and regression algorithms from scratch in Python Be amazed to see the algorithms in action Evaluate the performance of a machine learning model and optimize it Solve interesting real-world problems using machine learning and Python as the journey unfolds In Detail Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. Style and approach This book is an enticing journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. Every concept is explained with the help of a project that solves a real-world problem, and involves hands-on work—giving you a deep insight into the world of machine learning. With simple yet rich language—Python—you will understand and be able to implement the examples with ease.