Download casimir physics lecture notes in physics in pdf or read casimir physics lecture notes in physics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get casimir physics lecture notes in physics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Casimir Physics

Author: Diego Dalvit
Publisher: Springer Science & Business Media
ISBN: 364220287X
Size: 48.84 MB
Format: PDF
View: 3914
Download and Read
Casimir effects serve as primary examples of directly observable manifestations of the nontrivial properties of quantum fields, and as such are attracting increasing interest from quantum field theorists, particle physicists, and cosmologists. Furthermore, though very weak except at short distances, Casimir forces are universal in the sense that all material objects are subject to them. They are thus also an increasingly important part of the physics of atom-surface interactions, while in nanotechnology they are being investigated not only as contributors to ‘stiction’ but also as potential mechanisms for actuating micro-electromechanical devices. While the field of Casimir physics is expanding rapidly, it has reached a level of maturity in some important respects: on the experimental side, where most sources of imprecision in force measurements have been identified as well as on the theoretical side, where, for example, semi-analytical and numerical methods for the computation of Casimir forces between bodies of arbitrary shape have been successfully developed. This book is, then, a timely and comprehensive guide to the essence of Casimir (and Casimir-Polder) physics that will have lasting value, serving the dual purpose of an introduction and reference to the field. While this volume is not intended to be a unified textbook, but rather a collection of largely independent chapters written by prominent experts in the field, the detailed and carefully written articles adopt a style that should appeal to non-specialist researchers in the field as well as to a broader audience of graduate students.

Forces Of The Quantum Vacuum

Author: William M R Simpson
Publisher: World Scientific Publishing Company
ISBN: 9814644773
Size: 13.51 MB
Format: PDF, Kindle
View: 4773
Download and Read
Forces of the Quantum Vacuum presents a number of theoretical approaches to Casimir, van der Waals and Casimir–Polder forces that have been fruitfully employed in mainstream research, and also reviews the experimental evidence for Casimir forces. Beginning with basic ideas in quantum mechanics and building its way to a sophisticated form of macroscopic QED, the book provides an inspiring training manual for graduate students to develop in a natural progression the ideas needed for modern theoretical research on Casimir forces.

Lie Algebras And Applications

Author: Francesco Iachello
Publisher: Springer
ISBN: 3540362398
Size: 22.39 MB
Format: PDF, Docs
View: 4508
Download and Read
This book, designed for advanced graduate students and post-graduate researchers, introduces Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.

Surprises In Theoretical Casimir Physics

Author: William M.R. Simpson
Publisher: Springer
ISBN: 3319093150
Size: 63.10 MB
Format: PDF, ePub, Mobi
View: 3038
Download and Read
Despite more than half a century of theoretical work, the Casimir effect is still not as fully understood as some suppose. In this treatise, the author uncovers new puzzles and paradoxes concerning this mysterious phenomenon. In particular, he clearly demonstrates that the most sophisticated theories fail when confronted with dielectrics in which the refractive index is not uniform but gradually changes.

Phase Space Picture Of Quantum Mechanics

Author: Y S Kim
Publisher: World Scientific
ISBN: 9814506672
Size: 27.85 MB
Format: PDF, ePub, Mobi
View: 6339
Download and Read
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects. Contents:Phase Space in Classical MechanicsForms of Quantum MechanicsWigner Phase- Space Distribution FunctionsLinear Canonical Transformations in Quantum MechanicsCoherent and Squeezed StatesPhase-Space Picture of Coherent and Squeezed StatesLorentz TransformationsCovariant Harmonic OscillatorsLorentz-Squeezed HadronsSpace-Time Geometry of Extended Particles Readership: Physicists, applied physicists and mathematical physicists. keywords:Lorentz Transformations;Wigner's Little Groups;Quantum Optics;Relativistic Quantum Mechanics;Phase Space;Wigner Function;Squeezed States;Feynman's Parton Picture;Covariant Harmonic Oscillators;Space-Time Geometry;Hadrons;Group Theory “… if Casimir invariants and Lorentz groups excite you, you'll be at home in Kim and Noz's lecture notes…” Contemporary Physics

Ten Physical Applications Of Spectral Zeta Functions

Author: Emilio Elizalde
Publisher: Springer
ISBN: 3642294057
Size: 13.80 MB
Format: PDF, Kindle
View: 4471
Download and Read
Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, including the calculation of the vacuum energy fluctuations at large scale in braneworld and other models.

Spectral Methods In Quantum Field Theory

Author: Noah Graham
Publisher: Springer Science & Business Media
ISBN: 3642001386
Size: 74.89 MB
Format: PDF, ePub, Docs
View: 7119
Download and Read
In this monograph we apply scattering theory methods to calculations in quantum ?eld theory, with a particular focus on properties of the quantum vacuum. These methods will provide e?cient and reliable solutions to a - riety of problems in quantum ?eld theory. Our approach will also elucidate in a concrete context many of the subtleties of quantum ?eld theory, such as divergences, regularization, and renormalization, by connecting them to more familiar results in quantum mechanics. We will use tools of scattering theory to characterize the spectrum of energyeigenstatesinapotentialbackground,hencethetermspectralmethods. This mode spectrum comprises both discrete bound states and a continuum of scattering states. We develop a powerful formalism that parameterizes the e?ects of the continuum by the density of states, which we compute from scattering data. Summing the zero-point energies of these modes gives the energy of the quantum vacuum, which is one of the central quantities we study.Althoughthemostcommonlystudiedbackgroundpotentialsarisefrom static soliton solutions to the classical equations of motion, these methods are not limited to such cases.

What S The Big Idea

Author: Dale Albert Johnson
Publisher: Lulu.com
ISBN: 1387356380
Size: 21.74 MB
Format: PDF, ePub
View: 7412
Download and Read
This book consists of a series of essays on physics, consciousness, and religion. It explores current things in these fields of study.

Non Relativistic Qed Theory Of The Van Der Waals Dispersion Interaction

Author: Akbar Salam
Publisher: Springer
ISBN: 3319456067
Size: 70.39 MB
Format: PDF, ePub
View: 703
Download and Read
This book provides details of the calculation of the interaction between two neutral polarizable atoms or molecules using molecular quantum electrodynamics (QED). To better understand the origin of this force, it briefly outlines molecular QED theory, the well-known van der Waals dispersion potential first evaluated by Casimir and Polder, who accounted for retardation effects. It presents different calculation schemes for the evaluation of the dispersion potential and also discusses energy shifts involving electric quadrupole and octupole moments, along with discriminatory dispersion potentials. Further, it explores in detail non-additive dispersion interaction energies between three-bodies, as well as the effects of higher multipole moment correction terms, and provides results for specific geometries such as collinear and equilateral triangles. Lastly, it computes near and far-zone asymptotic limits for both pair and many-body potentials, with the former shown to agree with less rigorous semi-classical calculations.

Dispersion Forces I

Author: Stefan Yoshi Buhmann
Publisher: Springer
ISBN: 3642324843
Size: 50.63 MB
Format: PDF, ePub, Docs
View: 6699
Download and Read
Dispersion forces acting on both atoms and bodies play a key role in modern nanotechnology. As demonstrated in this book, macroscopic quantum electrodynamics provides a powerful method for understanding and quantifying dispersion forces in a vast range of realistic scenarios. The basic physical concepts and theoretical steps allow for the derivation of outlined general expressions for dispersion forces. As illustrated by a number of examples, these expressions can easily be used to study forces between objects of various shapes and materials, including effects like material absorption, nontrivial magnetic properties and dynamical forces asssociated with excited systems.