Download chemistry of powder production particle technology series in pdf or read chemistry of powder production particle technology series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get chemistry of powder production particle technology series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Chemistry Of Powder Production

Author: Yasuo Arai
Publisher: Springer Science & Business Media
ISBN: 9400914938
Size: 59.31 MB
Format: PDF, ePub
View: 4961
Download and Read
Chemistry of Powder Production focuses on the solid-state chemistry of powder materials and relates this to the structure, properties and preparation, and characterization techniques for these important industrial products. Additionally, the properties of the particles are discussed in relation to their surface structure and characteristics. This book describes the fundamentals of statistical methods for measuring the characteristics of particles. New advanced materials being developed in powder technology manufacturing techniques are also emphasised, including powdered materials for advanced ceramics as well as magnetic and pigment materials.

Introduction To Particle Technology

Author: Martin J. Rhodes
Publisher: John Wiley & Sons
ISBN: 1118681541
Size: 41.61 MB
Format: PDF, Kindle
View: 6604
Download and Read
Particle technology is a term used to refer to the science and technology related to the handling and processing of particles and powders. The production of particulate materials, with controlled properties tailored to subsequent processing and applications, is of major interest to a wide range of industries, including chemical and process, food, pharmaceuticals, minerals and metals companies and the handling of particles in gas and liquid solutions is a key technological step in chemical engineering. This textbook provides an excellent introduction to particle technology with worked examples and exercises. Based on feedback from students and practitioners worldwide, it has been newly edited and contains new chapters on slurry transport, colloids and fine particles, size enlargement and the health effects of fine powders. Topics covered include: Characterization (Size Analysis) Processing (Granulation, Fluidization) Particle Formation (Granulation, Size Reduction) Storage and Transport (Hopper Design, Pneumatic Conveying, Standpipes, Slurry Flow) Separation (Filtration, Settling, Cyclones) Safety (Fire and Explosion Hazards, Health Hazards) Engineering the Properties of Particulate Systems (Colloids, Respirable Drugs, Slurry Rheology) This book is essential reading for undergraduate students of chemical engineering on particle technology courses. It is also valuable supplementary reading for students in other branches of engineering, applied chemistry, physics, pharmaceutics, mineral processing and metallurgy. Practitioners in industries in which powders are handled and processed may find it a useful starting point for gaining an understanding of the behavior of particles and powders. Review of the First Edition taken from High Temperatures - High pressures 1999 31 243 – 251 "..This is a modern textbook that presents clear-cut knowledge. It can be successfully used both for teaching particle technology at universities and for individual study of engineering problems in powder processing."

Processing Of Particulate Solids

Author: Jonathan Seville
Publisher: Springer Science & Business Media
ISBN: 9400914598
Size: 55.92 MB
Format: PDF, ePub, Mobi
View: 6807
Download and Read
Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.

Powder Surface Area And Porosity

Author: Seymour Lowell
Publisher: Springer Science & Business Media
ISBN: 9401579555
Size: 31.46 MB
Format: PDF
View: 229
Download and Read
The rapid growth of interest in powders and their surface properties in many diverse industries prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. It is intended as an introduction to some of the elementary theory and experimental methods used to study the surface area, porosity, density, and particle size of powders. It may be found useful by those with little or no training in solid surfaces who have the need to learn quickly the rudiments of surface area, density, pore size, and particle size measurements. S. Lowell J.E. Shields Symbols Use of symbols for purposes other than those indicated in the following table are so defined in the text. Some symbols not shown in the table are also defined in the text. d adsorbate cross-sectional area A area; condensation coefficient; collision frequency C BET constant c concentration D diameter; coefficient of thermal diffusion E adsorption potential permeability aspect factor f F flow rate; force; feed rate g gravitational constant G Gibbs free energy S G free surface energy h heat of immersion per unit area; height H enthalpy heat of immersion Hi heat of adsorption Hsv BET intercept; filament current k thermal conductivity; specific reaction rate K Harkins-Jura constant C length L heat of liquefaction M mass M molecular weight MPa megapascals number of moles n number of molecules; number of particles N N Avogadro's num'ber molecular collisions per square cm per second

Particle Technology And Engineering

Author: Jonathan P.K. Seville
Publisher: Butterworth-Heinemann
ISBN: 0080983448
Size: 75.84 MB
Format: PDF, ePub, Mobi
View: 3892
Download and Read
Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods. Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling Enables engineers to build their knowledge and skills and to enhance their mechanistic understanding of particulate systems

Particle Technology And Applications

Author: Sunggyu Lee
Publisher: CRC Press
ISBN: 1439881685
Size: 11.90 MB
Format: PDF, Mobi
View: 6653
Download and Read
Particle Technology and Applications presents the theoretical and technological background of particle science and explores up-to-date applications of particle technologies in the chemical, petrochemical, energy, mechanical, and materials industries. It looks at the importance of particle science and technology in the development of efficient chemical processes and novel functional materials. With peer-reviewed chapters written by a select group of academic and industry experts, the book provides examples of particle technology and its advanced industrial applications. It includes the necessary scientific background of particle technology as well as relevant technological details of the application areas. This helps readers grasp specific details of the applied technology, since the advanced particle technology can directly or synergistically have an impact on outcomes, such as the development of a targeted functional material, enhancement of existing processing techniques, and modification of the properties of existing materials. Presenting a consistent scientific treatment of all topics, this comprehensive yet accessible book covers a variety of practical applications and relevant theoretical foundation of particle science and technology. It will help readers tackle new challenges in process and product development and create new methodologies in the clean technology sector.

Characterization Of Porous Solids And Powders Surface Area Pore Size And Density

Author: Seymour Lowell
Publisher: Springer Science & Business Media
ISBN: 1402023030
Size: 78.92 MB
Format: PDF, Kindle
View: 2199
Download and Read
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density". This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded.

Fluidization Solids Handling And Processing

Author: Wen-Ching Yang
Publisher: Elsevier
ISBN: 0815517238
Size: 21.71 MB
Format: PDF, ePub, Mobi
View: 5134
Download and Read
This volume, Fluidization, Solids Handling, and Processing, is the first of a series of volumes on "Particle Technology". Particles are important products of chemical process industries spanning the basic and specialty chemicals, agricultural products, pharmaceuticals, paints, dyestuffs and pigments, cement, ceramics, and electronic materials. Solids handling and processing technologies are thus essential to the operation and competitiveness of these industries. Fluidization technology is employed not only in chemical production, it also is applied in coal gasification and combustion for power generation, mineral processing, food processing, soil washing and other related waste treatment, environmental remediation, and resource recovery processes. The FCC (Fluid Catalytic Cracking) technology commonly employed in the modern petroleum refineries is also based on fluidization principles.

Particulate Products

Author: Henk G. Merkus
Publisher: Springer Science & Business Media
ISBN: 3319007149
Size: 73.18 MB
Format: PDF, ePub
View: 5011
Download and Read
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require – at the typical particulate concentrations of these products – that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products.

Design And Processing Of Particulate Products

Author: Jim Litster
Publisher: Cambridge University Press
ISBN: 1107007372
Size: 64.81 MB
Format: PDF, Kindle
View: 2115
Download and Read
A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.