Download clinical trial data analysis using r chapman hall crc biostatistics series in pdf or read clinical trial data analysis using r chapman hall crc biostatistics series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get clinical trial data analysis using r chapman hall crc biostatistics series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Clinical Trial Data Analysis Using R And Sas

Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 1351651145
Size: 30.93 MB
Format: PDF
View: 4026
Download and Read
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods." —Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.

Sample Size Calculations In Clinical Research

Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 9780203911341
Size: 42.63 MB
Format: PDF, ePub
View: 1062
Download and Read
Sample size calculation plays an important role in clinical research. It is not uncommon, however, to observe discrepancies among study objectives (or hypotheses), study design, statistical analysis (or test statistic), and sample size calculation. Focusing on sample size calculation for studies conducted during the various phases of clinical research and development, Sample Size Calculation in Clinical Research explores the causes of discrepancies and how to avoid them. This volume provides formulas and procedures for determination of sample size required not only for testing equality, but also for testing non-inferiority/superiority, and equivalence (similarity) based on both untransformed (raw) data and log-transformed data under a parallel-group design or a crossover design with equal or unequal ratio of treatment allocations. It contains a comprehensive and unified presentation of statistical procedures for sample size calculation that are commonly employed at various phases of clinical development. Each chapter includes, whenever possible, real examples of clinical studies from therapeutic areas such as cardiovascular, central nervous system, anti-infective, oncology, and women's health to demonstrate the clinical and statistical concepts, interpretations, and their relationships and interactions. The book highlights statistical procedures for sample size calculation and justification that are commonly employed in clinical research and development. It provides clear, illustrated explanations of how the derived formulas and/or statistical procedures can be used.

Bayesian Adaptive Methods For Clinical Trials

Author: Scott M. Berry
Publisher: CRC Press
ISBN: 9781439825518
Size: 30.61 MB
Format: PDF, ePub, Docs
View: 4688
Download and Read
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer’s disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISPY-2 trials. In the following chapter on late (Phase III) studies, the authors emphasize modern adaptive methods and seamless Phase II–III trials for maximizing information usage and minimizing trial duration. They also describe a case study of a recently approved medical device to treat atrial fibrillation. The concluding chapter covers key special topics, such as the proper use of historical data, equivalence studies, and subgroup analysis. For readers involved in clinical trials research, this book significantly updates and expands their statistical toolkits. The authors provide many detailed examples drawing on real data sets. The R and WinBUGS codes used throughout are available on supporting websites. Scott Berry talks about the book on the CRC Press YouTube Channel.

Statistical Design And Analysis Of Clinical Trials

Author: Weichung Joe Shih
Publisher: CRC Press
ISBN: 1482250500
Size: 50.67 MB
Format: PDF, ePub
View: 4736
Download and Read
Statistical Design and Analysis of Clinical Trials: Principles and Methods concentrates on the biostatistics component of clinical trials. Developed from the authors’ courses taught to public health and medical students, residents, and fellows during the past 15 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. Teach Your Students How to Design, Monitor, and Analyze Clinical Trials The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, explain the concept of different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. Turn Your Students into Better Clinical Trial Investigators This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students a multidisciplinary understanding of the concepts and techniques involved in designing and analyzing various types of trials. The book’s balanced set of homework assignments and in-class exercises are appropriate for students in (bio)statistics, epidemiology, medicine, pharmacy, and public health.

Applied Meta Analysis With R

Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 1466505990
Size: 77.71 MB
Format: PDF, Docs
View: 6015
Download and Read
In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, Applied Meta-Analysis with R shows how to implement statistical meta-analysis methods to real data using R. Drawing on their extensive research and teaching experiences, the authors provide detailed, step-by-step explanations of the implementation of meta-analysis methods using R. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R packages and functions. This systematic approach helps readers thoroughly understand the analysis methods and R implementation, enabling them to use R and the methods to analyze their own meta-data. Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R) in public health, medical research, governmental agencies, and the pharmaceutical industry.

Multiple Testing Problems In Pharmaceutical Statistics

Author: Alex Dmitrienko
Publisher: CRC Press
ISBN: 9781584889854
Size: 46.25 MB
Format: PDF, ePub, Mobi
View: 3770
Download and Read
Useful Statistical Approaches for Addressing Multiplicity Issues Includes practical examples from recent trials Bringing together leading statisticians, scientists, and clinicians from the pharmaceutical industry, academia, and regulatory agencies, Multiple Testing Problems in Pharmaceutical Statistics explores the rapidly growing area of multiple comparison research with an emphasis on pharmaceutical applications. In each chapter, the expert contributors describe important multiplicity problems encountered in pre-clinical and clinical trial settings. The book begins with a broad introduction from a regulatory perspective to different types of multiplicity problems that commonly arise in confirmatory controlled clinical trials, before giving an overview of the concepts, principles, and procedures of multiple testing. It then presents statistical methods for analyzing clinical dose response studies that compare several dose levels with a control as well as statistical methods for analyzing multiple endpoints in clinical trials. After covering gatekeeping procedures for testing hierarchically ordered hypotheses, the book discusses statistical approaches for the design and analysis of adaptive designs and related confirmatory hypothesis testing problems. The final chapter focuses on the design of pharmacogenomic studies based on established statistical principles. It also describes the analysis of data collected in these studies, taking into account the numerous multiplicity issues that occur. This volume explains how to solve critical issues in multiple testing encountered in pre-clinical and clinical trial applications. It presents the necessary statistical methodology, along with examples and software code to show how to use the methods in practice.

Analyzing Longitudinal Clinical Trial Data

Author: Craig Mallinckrodt
Publisher: CRC Press
ISBN: 1351737686
Size: 29.65 MB
Format: PDF
View: 4776
Download and Read
Analyzing Longitudinal Clinical Trial Data: A Practical Guide provide practical and easy to implement approaches for bringing the latest theory on analysis of longitudinal clinical trial data into routine practice.?This book, with its example-oriented approach that includes numerous SAS and R code fragments, is an essential resource for statisticians and graduate students specializing in medical research. The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.

Statistical Design And Analysis Of Stability Studies

Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 9781584889069
Size: 74.59 MB
Format: PDF, Docs
View: 6107
Download and Read
The US Food and Drug Administration's Report to the Nation in 2004 and 2005 indicated that one of the top reasons for drug recall was that stability data did not support existing expiration dates. Pharmaceutical companies conduct stability studies to characterize the degradation of drug products and to estimate drug shelf life. Illustrating how stability studies play an important role in drug safety and quality assurance, Statistical Design and Analysis of Stability Studies presents the principles and methodologies in the design and analysis of stability studies. After introducing the basic concepts of stability testing, the book focuses on short-term stability studies and reviews several methods for estimating drug expiration dating periods. It then compares some commonly employed study designs and discusses both fixed and random batch statistical analyses. Following a chapter on the statistical methods for stability analysis under a linear mixed effects model, the book examines stability analyses with discrete responses, multiple components, and frozen drug products. In addition, the author provides statistical methods for dissolution testing and explores current issues and recent developments in stability studies. To ensure the safety of consumers, professionals in the field must carry out stability studies to determine the reliability of drug products during their expiration period. This book provides the material necessary for you to perform stability designs and analyses in pharmaceutical research and development.

Design And Analysis Of Clinical Trials For Predictive Medicine

Author: Shigeyuki Matsui
Publisher: CRC Press
ISBN: 1466558164
Size: 46.80 MB
Format: PDF, ePub, Mobi
View: 387
Download and Read
Design and Analysis of Clinical Trials for Predictive Medicine provides statistical guidance on conducting clinical trials for predictive medicine. It covers statistical topics relevant to the main clinical research phases for developing molecular diagnostics and therapeutics—from identifying molecular biomarkers using DNA microarrays to confirming their clinical utility in randomized clinical trials. The foundation of modern clinical trials was laid many years before modern developments in biotechnology and genomics. Drug development in many diseases is now shifting to molecularly targeted treatment. Confronted with such a major break in the evolution toward personalized or predictive medicine, the methodologies for design and analysis of clinical trials is now evolving. This book is one of the first attempts to contribute to this evolution by laying a foundation for the use of appropriate statistical designs and methods in future clinical trials for predictive medicine. It is a useful resource for clinical biostatisticians, researchers focusing on predictive medicine, clinical investigators, translational scientists, and graduate biostatistics students.

Adaptive Design Theory And Implementation Using Sas And R Second Edition

Author: Mark Chang
Publisher: CRC Press
ISBN: 1482256592
Size: 68.43 MB
Format: PDF, ePub, Docs
View: 5305
Download and Read
Get Up to Speed on Many Types of Adaptive Designs Since the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the use of various adaptive design methods in clinical trials. New to the Second Edition Twelve new chapters covering blinded and semi-blinded sample size reestimation design, pick-the-winners design, biomarker-informed adaptive design, Bayesian designs, adaptive multiregional trial design, SAS and R for group sequential design, and much more More analytical methods for K-stage adaptive designs, multiple-endpoint adaptive design, survival modeling, and adaptive treatment switching New material on sequential parallel designs with rerandomization and the skeleton approach in adaptive dose-escalation trials Twenty new SAS macros and R functions Enhanced end-of-chapter problems that give readers hands-on practice addressing issues encountered in designing real-life adaptive trials Covering even more adaptive designs, this book provides biostatisticians, clinical scientists, and regulatory reviewers with up-to-date details on this innovative area in pharmaceutical research and development. Practitioners will be able to improve the efficiency of their trial design, thereby reducing the time and cost of drug development.