Download clinical trial data analysis using r chapman hall crc biostatistics series in pdf or read clinical trial data analysis using r chapman hall crc biostatistics series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get clinical trial data analysis using r chapman hall crc biostatistics series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Clinical Trial Data Analysis Using R And Sas

Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 1351651145
Size: 26.32 MB
Format: PDF, ePub
View: 163
Download and Read
Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods." —Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.

Sample Size Calculations In Clinical Research

Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 9780203911341
Size: 79.21 MB
Format: PDF, Mobi
View: 762
Download and Read
Sample size calculation plays an important role in clinical research. It is not uncommon, however, to observe discrepancies among study objectives (or hypotheses), study design, statistical analysis (or test statistic), and sample size calculation. Focusing on sample size calculation for studies conducted during the various phases of clinical research and development, Sample Size Calculation in Clinical Research explores the causes of discrepancies and how to avoid them. This volume provides formulas and procedures for determination of sample size required not only for testing equality, but also for testing non-inferiority/superiority, and equivalence (similarity) based on both untransformed (raw) data and log-transformed data under a parallel-group design or a crossover design with equal or unequal ratio of treatment allocations. It contains a comprehensive and unified presentation of statistical procedures for sample size calculation that are commonly employed at various phases of clinical development. Each chapter includes, whenever possible, real examples of clinical studies from therapeutic areas such as cardiovascular, central nervous system, anti-infective, oncology, and women's health to demonstrate the clinical and statistical concepts, interpretations, and their relationships and interactions. The book highlights statistical procedures for sample size calculation and justification that are commonly employed in clinical research and development. It provides clear, illustrated explanations of how the derived formulas and/or statistical procedures can be used.

Clinical Trial Optimization Using R

Author: Alex Dmitrienko
Publisher: CRC Press
ISBN: 1351647156
Size: 19.45 MB
Format: PDF, ePub
View: 2247
Download and Read
Clinical Trial Optimization Using R explores a unified and broadly applicable framework for optimizing decision making and strategy selection in clinical development, through a series of examples and case studies. It provides the clinical researcher with a powerful evaluation paradigm, as well as supportive R tools, to evaluate and select among simultaneous competing designs or analysis options. It is applicable broadly to statisticians and other quantitative clinical trialists, who have an interest in optimizing clinical trials, clinical trial programs, or associated analytics and decision making. This book presents in depth the Clinical Scenario Evaluation (CSE) framework, and discusses optimization strategies, including the quantitative assessment of tradeoffs. A variety of common development challenges are evaluated as case studies, and used to show how this framework both simplifies and optimizes strategy selection. Specific settings include optimizing adaptive designs, multiplicity and subgroup analysis strategies, and overall development decision-making criteria around Go/No-Go. After this book, the reader will be equipped to extend the CSE framework to their particular development challenges as well.

Statistical Methods For Survival Trial Design

Author: Jianrong Wu
Publisher: CRC Press
ISBN: 0429892942
Size: 61.19 MB
Format: PDF, ePub
View: 3299
Download and Read
Statistical Methods for Survival Trial Design: With Applications to Cancer Clinical Trials Using R provides a thorough presentation of the principles of designing and monitoring cancer clinical trials in which time-to-event is the primary endpoint. Traditional cancer trial designs with time-to-event endpoints are often limited to the exponential model or proportional hazards model. In practice, however, those model assumptions may not be satisfied for long-term survival trials. This book is the first to cover comprehensively the many newly developed methodologies for survival trial design, including trial design under the Weibull survival models; extensions of the sample size calculations under the proportional hazard models; and trial design under mixture cure models, complex survival models, Cox regression models, and competing-risk models. A general sequential procedure based on the sequential conditional probability ratio test is also implemented for survival trial monitoring. All methodologies are presented with sufficient detail for interested researchers or graduate students.

Clinical Trial Biostatistics And Biopharmaceutical Applications

Author: Walter R. Young
Publisher: CRC Press
ISBN: 1482212188
Size: 19.56 MB
Format: PDF, Docs
View: 3699
Download and Read
Since 1945, "The Annual Deming Conference on Applied Statistics" has been an important event in the statistics profession. In Clinical Trial Biostatistics and Biopharmaceutical Applications, prominent speakers from past Deming conferences present novel biostatistical methodologies in clinical trials as well as up-to-date biostatistical applications from the pharmaceutical industry. Divided into five sections, the book begins with emerging issues in clinical trial design and analysis, including the roles of modeling and simulation, the pros and cons of randomization procedures, the design of Phase II dose-ranging trials, thorough QT/QTc clinical trials, and assay sensitivity and the constancy assumption in noninferiority trials. The second section examines adaptive designs in drug development, discusses the consequences of group-sequential and adaptive designs, and illustrates group sequential design in R. The third section focuses on oncology clinical trials, covering competing risks, escalation with overdose control (EWOC) dose finding, and interval-censored time-to-event data. In the fourth section, the book describes multiple test problems with applications to adaptive designs, graphical approaches to multiple testing, the estimation of simultaneous confidence intervals for multiple comparisons, and weighted parametric multiple testing methods. The final section discusses the statistical analysis of biomarkers from omics technologies, biomarker strategies applicable to clinical development, and the statistical evaluation of surrogate endpoints. This book clarifies important issues when designing and analyzing clinical trials, including several misunderstood and unresolved challenges. It will help readers choose the right method for their biostatistical application. Each chapter is self-contained with references.

Randomized Phase Ii Cancer Clinical Trials

Author: Sin-Ho Jung
Publisher: CRC Press
ISBN: 143987185X
Size: 56.42 MB
Format: PDF, ePub, Docs
View: 6727
Download and Read
In cancer research, a traditional phase II trial is designed as a single-arm trial that compares the experimental therapy to a historical control. This simple trial design has led to several adverse issues, including increased false positivity of phase II trial results and negative phase III trials. To rectify these problems, oncologists and biostatisticians have begun to use a randomized phase II trial that compares an experimental therapy with a prospective control therapy. Randomized Phase II Cancer Clinical Trials explains how to properly select and accurately use diverse statistical methods for designing and analyzing phase II trials. The author first reviews the statistical methods for single-arm phase II trials since some methodologies for randomized phase II trials stem from single-arm phase II trials and many phase II cancer clinical trials still use single-arm designs. The book then presents methods for randomized phase II trials and describes statistical methods for both single-arm and randomized phase II trials. Although the text focuses on phase II cancer clinical trials, the statistical methods covered can also be used (with minor modifications) in phase II trials for other diseases and in phase III cancer clinical trials. Suitable for cancer clinicians and biostatisticians, this book shows how randomized phase II trials with a prospective control resolve the shortcomings of traditional single-arm phase II trials. It provides readers with numerous statistical design and analysis methods for randomized phase II trials in oncology.

Bayesian Adaptive Methods For Clinical Trials

Author: Scott M. Berry
Publisher: CRC Press
ISBN: 9781439825518
Size: 41.37 MB
Format: PDF, Mobi
View: 6476
Download and Read
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer’s disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISPY-2 trials. In the following chapter on late (Phase III) studies, the authors emphasize modern adaptive methods and seamless Phase II–III trials for maximizing information usage and minimizing trial duration. They also describe a case study of a recently approved medical device to treat atrial fibrillation. The concluding chapter covers key special topics, such as the proper use of historical data, equivalence studies, and subgroup analysis. For readers involved in clinical trials research, this book significantly updates and expands their statistical toolkits. The authors provide many detailed examples drawing on real data sets. The R and WinBUGS codes used throughout are available on supporting websites. Scott Berry talks about the book on the CRC Press YouTube Channel.

Analyzing Longitudinal Clinical Trial Data

Author: Craig Mallinckrodt
Publisher: CRC Press
ISBN: 1351737686
Size: 66.20 MB
Format: PDF, Mobi
View: 4130
Download and Read
Analyzing Longitudinal Clinical Trial Data: A Practical Guide provide practical and easy to implement approaches for bringing the latest theory on analysis of longitudinal clinical trial data into routine practice.?This book, with its example-oriented approach that includes numerous SAS and R code fragments, is an essential resource for statisticians and graduate students specializing in medical research. The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.

Applied Meta Analysis With R

Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 1466505990
Size: 25.61 MB
Format: PDF, ePub, Docs
View: 6767
Download and Read
In biostatistical research and courses, practitioners and students often lack a thorough understanding of how to apply statistical methods to synthesize biomedical and clinical trial data. Filling this knowledge gap, Applied Meta-Analysis with R shows how to implement statistical meta-analysis methods to real data using R. Drawing on their extensive research and teaching experiences, the authors provide detailed, step-by-step explanations of the implementation of meta-analysis methods using R. Each chapter gives examples of real studies compiled from the literature. After presenting the data and necessary background for understanding the applications, various methods for analyzing meta-data are introduced. The authors then develop analysis code using the appropriate R packages and functions. This systematic approach helps readers thoroughly understand the analysis methods and R implementation, enabling them to use R and the methods to analyze their own meta-data. Suitable as a graduate-level text for a meta-data analysis course, the book is also a valuable reference for practitioners and biostatisticians (even those with little or no experience in using R) in public health, medical research, governmental agencies, and the pharmaceutical industry.