Download computational materials design springer series in materials science in pdf or read computational materials design springer series in materials science in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get computational materials design springer series in materials science in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Multiscale Paradigms In Integrated Computational Materials Science And Engineering

Author: Pierre Deymier
Publisher: Springer
ISBN: 3319245295
Size: 37.51 MB
Format: PDF, ePub
View: 268
Download and Read
This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

Information Science For Materials Discovery And Design

Author: Turab Lookman
Publisher: Springer
ISBN: 331923871X
Size: 15.69 MB
Format: PDF, Docs
View: 4495
Download and Read
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Computational Materials Design

Author: Tetsuya Saito
Publisher: Springer Science & Business Media
ISBN: 3662039230
Size: 36.70 MB
Format: PDF, Docs
View: 5355
Download and Read
This book consists of ten chapters which outline a wide range of technologies from first-principle calculations to continuum mechanics, with applications to materials design and development. Written with a clear exposition, this book will be invaluable for engineers who want to learn about the modern technologies and techniques utilized in materials design.

Computational Materials Science

Author: Kaoru Ohno
Publisher: Springer Science & Business Media
ISBN: 9783540639619
Size: 54.81 MB
Format: PDF, Kindle
View: 5025
Download and Read
Powerful computers now enable scientists to model the physical and chemical properties and behavior of complex materials using first principles. This book introduces dramatically new computational techniques in materials research, specifically for understanding molecular dynamics.

Computational Materials Science

Author:
Publisher: Elsevier
ISBN: 9780080529639
Size: 65.28 MB
Format: PDF, ePub, Docs
View: 862
Download and Read
Computational tools have been permanently deposited into the toolbox of theoretical chemists. The impact of new computational tools can hardly be overestimated, and their presence in research and applications is overwhelming. Theoretical methods such as quantum mechanics, molecular dynamics, and statistical mechanics have been successfully used to characterize chemical systems and to design new materials, drugs, and chemicals. This volume on Computational Material Sciences covers selected examples of notable applications of computational techniques to material science. The chapters contained in this volume include discussions of the phenomenon of chaos in chemistry, reaction network analysis, and mechanisms of formation of clusters. Details of more practical applications are also included in the form of reviews of computational design of new materials and the prediction of properties and structures of well known molecular assemblies. Current developments of effective computational methods, which will help in understanding, predicting, and optimizing periodic systems, nanostructures, clusters and model surfaces are also covered in this volume. Reviews of current computational methods applied in material science Reviews of practical applications of modelling of structures and properties of materials Cluster and periodical approaches

Hartree Fock Slater Method For Materials Science

Author: Hirohiko Adachi
Publisher: Springer Science & Business Media
ISBN: 3540312978
Size: 60.24 MB
Format: PDF, Docs
View: 7233
Download and Read
Molecular-orbital calculations for materials design such as alloys, ceramics, and coordination compounds are now possible for experimentalists. Molecuar-orbital calculations for the interpretation of chemical effect of spectra are also possible for experimentalists. The most suitable molecular-orbital calculation method for these purpose is the DV-Xa method, which is robust in such a way that the calculation converges to a result even if the structure of the molecule or solid is impossible in the pressure and temperature ranges on earth. This book specially addresses the methods to design novel materials and to predict the spectralline shape of unknown materials using the DV-Xa molecular-orbital method, but is also useful for those who want to calculate electronic structures of materials using any kind of method.

Raman Scattering In Materials Science

Author: Willes H. Weber
Publisher: Springer Science & Business Media
ISBN: 3662042215
Size: 43.69 MB
Format: PDF, ePub
View: 1855
Download and Read
Raman scattering is now being applied with increasing success to a wide range of practical problems at the cutting edge of materials science. The purpose of this book is to make Raman spectroscopy understandable to the non-specialist and thus to bring it into the mainstream of routine materials characterization. The book is pedagogical in approach and focuses on technologically important condensed-matter systems in which the specific use of Raman spectroscopy yields new and useful information. Included are chapters on instrumentation, bulk semiconductors and alloys, heterostructures, high-Tc superconductors, catalysts, carbon-based materials, wide-gap and super-hard materials, and polymers.

Reference Materials In Analytical Chemistry

Author: A. Zschunke
Publisher: Springer Science & Business Media
ISBN: 9783540667766
Size: 21.26 MB
Format: PDF, ePub, Docs
View: 2175
Download and Read
Under the guidance of the German Federal Institute for Materials Research (BAM), the standards for fabrication and application of reference materials are presented here in comprehensive form. The areas covered are analytical chemistry, materials science, environmental analysis, clinical and forensic toxicological analysis, and gas and food analysis. A standard reference for every analytical laboratory.

Materials Discovery And Design

Author: Turab Lookman
Publisher: Springer
ISBN: 3319994654
Size: 67.18 MB
Format: PDF, ePub, Mobi
View: 6848
Download and Read
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Computer Algebra And Materials Physics

Author: Akihito Kikuchi
Publisher: Springer
ISBN: 3319942263
Size: 44.91 MB
Format: PDF, Docs
View: 1513
Download and Read
This book is intended as an introductory lecture in material physics, in which the modern computational group theory and the electronic structure calculation are in collaboration. The first part explains how to use computer algebra for applications in solid-state simulation, based on the GAP computer algebra package. Computer algebra enables us to easily obtain various group theoretical properties, such as the representations, character tables, and subgroups. Furthermore it offers a new perspective on material design, which could be executed in a mathematically rigorous and systematic way. The second part then analyzes the relation between the structural symmetry and the electronic structure in C60 (as an example of a system without periodicity). The principal object of the study was to illustrate the hierarchical change in the quantum-physical properties of the molecule, which correlates to the reduction in the symmetry (as it descends down in the ladder of subgroups). The book also presents the computation of the vibrational modes of the C60 by means of the computer algebra. In order to serve the common interests of researchers, the details of the computations (the required initial data and the small programs developed for the purpose) are explained in as much detail as possible.