Download current topics in the theory and application of latent variable models in pdf or read current topics in the theory and application of latent variable models in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get current topics in the theory and application of latent variable models in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Current Topics In The Theory And Application Of Latent Variable Models

Author: Michael Charles Edwards
Publisher: Routledge
ISBN: 1848729510
Size: 59.57 MB
Format: PDF, ePub, Mobi
View: 7250
Download and Read
This book presents recent developments in the theory and application of latent variable models (LVMs) by some of the most prominent researchers in the field. Topics covered involve a range of LVM frameworks including item response theory, structural equation modeling, factor analysis, and latent curve modeling, as well as various non-standard data structures and innovative applications. The book is divided into two sections, although several chapters cross these content boundaries. Part one focuses on complexities which involve the adaptation of latent variables models in research problems where real-world conditions do not match conventional assumptions. Chapters in this section cover issues such as analysis of dyadic data and complex survey data, as well as analysis of categorical variables. Part two of the book focuses on drawing real-world meaning from results obtained in LVMs. In this section there are chapters examining issues involving assessment of model fit, the nature of uncertainty in parameter estimates, inferences, and the nature of latent variables and individual differences. This book appeals to researchers and graduate students interested in the theory and application of latent variable models. As such, it serves as a supplementary reading in graduate level courses on latent variable models. Prerequisites include basic knowledge of latent variable models.

Diagnostic Measurement

Author: Andr? A. Rupp
Publisher: Guilford Press
ISBN: 1606235281
Size: 39.49 MB
Format: PDF, Mobi
View: 3682
Download and Read
This book provides a comprehensive introduction to the theory and practice of diagnostic classification models (DCMs), which are useful for statistically driven diagnostic decision making. DCMs can be employed in a wide range of disciplines, including educational assessment and clinical psychology. For the first time in a single volume, the authors present the key conceptual underpinnings and methodological foundations for applying these models in practice. Specifically, they discuss a unified approach to DCMs, the mathematical structure of DCMs and their relationship to other latent variable models, and the implementation and estimation of DCMs using Mplus. The book's highly accessible language, real-world applications, numerous examples, and clearly annotated equations will encourage professionals and students to explore the utility and statistical properties of DCMs in their own projects. This book will appeal to professionals in the testing industry; professors and students in educational, school, clinical, and cognitive psychology. It will also serve as a useful text in doctoral-level courses in diagnostic testing, cognitive diagnostic assessment, test validity, diagnostic assessment, advanced educational measurement, psychometrics, and item response theory

Latent Variable Modeling With R

Author: W. Holmes Finch
Publisher: Routledge
ISBN: 1317970756
Size: 76.31 MB
Format: PDF, Kindle
View: 6782
Download and Read
This book demonstrates how to conduct latent variable modeling (LVM) in R by highlighting the features of each model, their specialized uses, examples, sample code and output, and an interpretation of the results. Each chapter features a detailed example including the analysis of the data using R, the relevant theory, the assumptions underlying the model, and other statistical details to help readers better understand the models and interpret the results. Every R command necessary for conducting the analyses is described along with the resulting output which provides readers with a template to follow when they apply the methods to their own data. The basic information pertinent to each model, the newest developments in these areas, and the relevant R code to use them are reviewed. Each chapter also features an introduction, summary, and suggested readings. A glossary of the text’s boldfaced key terms and key R commands serve as helpful resources. The book is accompanied by a website with exercises, an answer key, and the in-text example data sets. Latent Variable Modeling with R: -Provides some examples that use messy data providing a more realistic situation readers will encounter with their own data. -Reviews a wide range of LVMs including factor analysis, structural equation modeling, item response theory, and mixture models and advanced topics such as fitting nonlinear structural equation models, nonparametric item response theory models, and mixture regression models. -Demonstrates how data simulation can help researchers better understand statistical methods and assist in selecting the necessary sample size prior to collecting data. -www.routledge.com/9780415832458 provides exercises that apply the models along with annotated R output answer keys and the data that corresponds to the in-text examples so readers can replicate the results and check their work. The book opens with basic instructions in how to use R to read data, download functions, and conduct basic analyses. From there, each chapter is dedicated to a different latent variable model including exploratory and confirmatory factor analysis (CFA), structural equation modeling (SEM), multiple groups CFA/SEM, least squares estimation, growth curve models, mixture models, item response theory (both dichotomous and polytomous items), differential item functioning (DIF), and correspondance analysis. The book concludes with a discussion of how data simulation can be used to better understand the workings of a statistical method and assist researchers in deciding on the necessary sample size prior to collecting data. A mixture of independently developed R code along with available libraries for simulating latent models in R are provided so readers can use these simulations to analyze data using the methods introduced in the previous chapters. Intended for use in graduate or advanced undergraduate courses in latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, and social and health sciences, researchers in these fields also appreciate this book’s practical approach. The book provides sufficient conceptual background information to serve as a standalone text. Familiarity with basic statistical concepts is assumed but basic knowledge of R is not.

Latent Variable Modeling Using R

Author: A. Alexander Beaujean
Publisher: Routledge
ISBN: 1317970721
Size: 76.16 MB
Format: PDF
View: 7733
Download and Read
This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Advances In Latent Variable Mixture Models

Author: Gregory R. Hancock
Publisher: IAP
ISBN: 1607526344
Size: 25.11 MB
Format: PDF, Docs
View: 4056
Download and Read
The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.

An Introduction To Latent Variable Growth Curve Modeling

Author: Terry E. Duncan
Publisher: Routledge
ISBN: 1135601240
Size: 64.93 MB
Format: PDF, Docs
View: 3113
Download and Read
This book provides a comprehensive introduction to latent variable growth curve modeling (LGM) for analyzing repeated measures. It presents the statistical basis for LGM and its various methodological extensions, including a number of practical examples of its use. It is designed to take advantage of the reader’s familiarity with analysis of variance and structural equation modeling (SEM) in introducing LGM techniques. Sample data, syntax, input and output, are provided for EQS, Amos, LISREL, and Mplus on the book’s CD. Throughout the book, the authors present a variety of LGM techniques that are useful for many different research designs, and numerous figures provide helpful diagrams of the examples. Updated throughout, the second edition features three new chapters—growth modeling with ordered categorical variables, growth mixture modeling, and pooled interrupted time series LGM approaches. Following a new organization, the book now covers the development of the LGM, followed by chapters on multiple-group issues (analyzing growth in multiple populations, accelerated designs, and multi-level longitudinal approaches), and then special topics such as missing data models, LGM power and Monte Carlo estimation, and latent growth interaction models. The model specifications previously included in the appendices are now available on the CD so the reader can more easily adapt the models to their own research. This practical guide is ideal for a wide range of social and behavioral researchers interested in the measurement of change over time, including social, developmental, organizational, educational, consumer, personality and clinical psychologists, sociologists, and quantitative methodologists, as well as for a text on latent variable growth curve modeling or as a supplement for a course on multivariate statistics. A prerequisite of graduate level statistics is recommended.

Random Effect And Latent Variable Model Selection

Author: David Dunson
Publisher: Springer Science & Business Media
ISBN: 9780387767215
Size: 20.32 MB
Format: PDF, ePub, Mobi
View: 3671
Download and Read
Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors on the mean and the second to random effects characterizing the impact on the covariance. LMEs have also been increasingly used for function estimation. In implementing LME analyses, model selection problems are unavoidable. For example, there may be interest in comparing models with and without a predictor in the ?xed and/or random effects component.

Advances In Latent Variable Mixture Models

Author: Gregory R. Hancock
Publisher: IAP
ISBN: 1607526344
Size: 42.98 MB
Format: PDF, ePub, Docs
View: 580
Download and Read
The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.

The Sage Handbook Of Quantitative Methodology For The Social Sciences

Author: David Kaplan
Publisher: SAGE
ISBN: 0761923594
Size: 48.65 MB
Format: PDF
View: 4517
Download and Read
The SAGE Handbook of Quantitative Methodology for the Social Sciences is the definitive reference for teachers, students, and researchers of quantitative methods in the social sciences, as it provides a comprehensive overview of the major techniques used in the field. The contributors, top methodologists and researchers, have written about their areas of expertise in ways that convey the utility of their respective techniques, but, where appropriate, they also offer a fair critique of these techniques. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter and makes this an invaluable resource.

Latent Variable Modeling And Applications To Causality

Author: Maia Berkane
Publisher: Springer Science & Business Media
ISBN: 146121842X
Size: 80.30 MB
Format: PDF, ePub, Mobi
View: 4574
Download and Read
This volume gathers refereed papers presented at the 1994 UCLA conference on "La tent Variable Modeling and Application to Causality. " The meeting was organized by the UCLA Interdivisional Program in Statistics with the purpose of bringing together a group of people who have done recent advanced work in this field. The papers in this volume are representative of a wide variety of disciplines in which the use of latent variable models is rapidly growing. The volume is divided into two broad sections. The first section covers Path Models and Causal Reasoning and the papers are innovations from contributors in disciplines not traditionally associated with behavioural sciences, (e. g. computer science with Judea Pearl and public health with James Robins). Also in this section are contri butions by Rod McDonald and Michael Sobel who have a more traditional approach to causal inference, generating from problems in behavioural sciences. The second section encompasses new approaches to questions of model selection with emphasis on factor analysis and time varying systems. Amemiya uses nonlinear factor analysis which has a higher order of complexity associated with the identifiability condi tions. Muthen studies longitudinal hierarchichal models with latent variables and treats the time vector as a variable rather than a level of hierarchy. Deleeuw extends exploratory factor analysis models by including time as a variable and allowing for discrete and ordi nal latent variables. Arminger looks at autoregressive structures and Bock treats factor analysis models for categorical data.