Download data governance tools evaluation criteria big data governance and alignment with enterprise data management in pdf or read data governance tools evaluation criteria big data governance and alignment with enterprise data management in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get data governance tools evaluation criteria big data governance and alignment with enterprise data management in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Data Governance Tools

Author: Sunil Soares
Publisher: Mc PressLlc
ISBN: 9781583478448
Size: 13.97 MB
Format: PDF, Docs
View: 6314
Download and Read
Comprehensively covers evaluation criteria for and capabilities of the software tools available for implementing a data governance program Data governance programs often start off using programs such as Microsoft Excel and Microsoft SharePoint to document and share data governance artifacts. But these tools often lack critical functionality. Meanwhile, vendors have matured their data governance offerings to the extent that today's organizations need to consider tools as a critical component of their data governance programs. In this book, data governance expert Sunil Soares reviews the Enterprise Data Management (EDM) reference architecture and discusses key data governance tasks that can be automated by tools for business glossaries, metadata management, data profiling, data quality management, master data management, reference data management, and information policy management. Subsequent sections describe the integration points between EDM tools and data governance and examine how governance tools interact with big data technologies, including Hadoop, NoSQL, stream computing, and text analytics. The final section of the book discusses evaluation criteria for data governance tools and provides an overview of key vendor platforms, including ASG, Collibra, Global IDs, IBM, Informatica, Orchestra Networks, SAP, and Talend.

Entity Information Life Cycle For Big Data

Author: John R. Talburt
Publisher: Morgan Kaufmann
ISBN: 012800665X
Size: 63.90 MB
Format: PDF, Docs
View: 4239
Download and Read
Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data’s impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems Offers practical guidance to help you design and build an EIM system that will successfully handle big data Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions

The Chief Data Officer Handbook For Data Governance

Author: Sunil Soares
Publisher: MC Press
ISBN: 9781583474174
Size: 42.64 MB
Format: PDF, Kindle
View: 6280
Download and Read
A practical guide for today's chief data officers to define and manage data governance programs The relatively new role of chief data officer (CDO) has been created to address the issue of managing a company's data as a strategic asset, but the problem is that there is no universally accepted "playbook" for this role. Magnifying the challenge is the rapidly increasing volume and complexity of data, as well as regulatory compliance as it relates to data. In this book, Sunil Soares provides a practical guide for today's chief data officers to manage data as an asset while delivering the trusted data required to power business initiatives, from the tactical to the transformative. The guide describes the relationship between the CDO and the data governance team, whose task is the formulation of policy to optimize, secure, and leverage information as an enterprise asset by aligning the objectives of multiple functions. Soares provides unique insight into the role of the CDO and presents a blueprint for implementing data governance successfully within the context of the position. With practical advice CDOs need, this book helps establish new data governance practices or mature existing practices.

Big Data Analytics

Author: David Loshin
Publisher: Elsevier
ISBN: 0124186645
Size: 61.68 MB
Format: PDF
View: 7165
Download and Read
Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. Guides the reader in assessing the opportunities and value proposition Overview of big data hardware and software architectures Presents a variety of technologies and how they fit into the big data ecosystem

Enterprise Information Management In Practice

Author: Saumya Chaki
Publisher: Apress
ISBN: 1484212185
Size: 30.10 MB
Format: PDF
View: 4711
Download and Read
Learn how to form and execute an enterprise information strategy: topics include data governance strategy, data architecture strategy, information security strategy, big data strategy, and cloud strategy. Manage information like a pro, to achieve much better financial results for the enterprise, more efficient processes, and multiple advantages over competitors. As you’ll discover in Enterprise Information Management in Practice, EIM deals with both structured data (e.g. sales data and customer data) as well as unstructured data (like customer satisfaction forms, emails, documents, social network sentiments, and so forth). With the deluge of information that enterprises face given their global operations and complex business models, as well as the advent of big data technology, it is not surprising that making sense of the large piles of data is of paramount importance. Enterprises must therefore put much greater emphasis on managing and monetizing both structured and unstructured data. As Saumya Chaki—an information management expert and consultant with IBM—explains in Enterprise Information Management in Practice, it is now more important than ever before to have an enterprise information strategy that covers the entire life cycle of information and its consumption while providing security controls. With Fortune 100 consultant Saumya Chaki as your guide, Enterprise Information Management in Practice covers each of these and the other pillars of EIM in depth, which provide readers with a comprehensive view of the building blocks for EIM. Enterprises today deal with complex business environments where information demands take place in real time, are complex, and often serve as the differentiator among competitors. The effective management of information is thus crucial in managing enterprises. EIM has evolved as a specialized discipline in the business intelligence and enterprise data warehousing space to address the complex needs of information processing and delivery—and to ensure the enterprise is making the most of its information assets.

Multi Domain Master Data Management

Author: Mark Allen
Publisher: Morgan Kaufmann
ISBN: 0128011475
Size: 35.76 MB
Format: PDF, ePub, Docs
View: 7523
Download and Read
Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data.

Togaf Version 9 Ein Pocket Guide

Author: The Open Group
Publisher: Van Haren
ISBN: 9087535813
Size: 53.94 MB
Format: PDF, ePub, Mobi
View: 4545
Download and Read
TOGAF® stellt ein offenes, branchenübergreifend vereinbartes Framework sowie eine Methode fürs Management von Unternehmensarchitekturen bereit. Dieses Taschenbuch basiert auf TOGAF Version 9 Enterprise Edition. Es bietet eine kurze und prägnante Einführung in TOGAF Version 9 und basiert auf der Spezifikation von TOGAF 9 und ergänzenden Beiträgen von Mitgliedern von The Open Group Architecture Forum. Zielgruppe dieses Dokuments: Unternehmensarchitekten, insbesondere Geschäfts-, Daten- und IT-Architekten, Systemarchitekten oder Lösungsarchitekten sowie Führungskräfte, die sich mit TOGAF vertraut machen möchten. Es werden keine Vorkenntnisse über die Unternehmensarchitektur vorausgesetzt. Behandelte Themen: Allgemeiner Überblick über TOGAF, die Unternehmensarchitektur sowie über die Inhalte und wichtigsten Konzepte von TOGAF; Einführung in die Methode zur Architekturentwicklung (Architecture Development Method, ADM), die TOGAF für die Entwicklung von Unternehmensarchitekturen Bereitstellt; Überblick über die wichtigsten Arbeitstechniken und -ergebnisse des ADM-Zyklus; Überblick über die Richtlinien zur Anpassung der ADM; Einführung in das Architecture Content Framework, einem strukturierten Metamodell für Architektur-Artefakte; Einführung in das Enterprise Continuum, einem übergreifenden Konzept, das zusammen mit der ADM zur Entwicklung einer Unternehmensarchitektur verwendet werden kann; Einführung in die TOGAF-Referenzmodelle, einschließlich TOGAF-Basisarchitektur und Integrated Information Infrastructure Reference Model (III-RM); Einführung in das Architecture Capability Framework, einer Sammlung von Ressourcen und Elementen, die für den Aufbau und Betrieb einer Architekturfunktion innerhalb eines Unternehmens bereitstehen; Übersicht über die Unterschiede und Neuerungen von TOGAF 9 im Vergleich zu TOGAF 8.1.1.

Corporate Data Quality

Author: Boris Otto
Publisher: Springer-Verlag
ISBN: 3662468069
Size: 11.59 MB
Format: PDF, ePub, Docs
View: 3255
Download and Read
Daten sind die strategische Ressource des 21. Jahrhunderts. Es findet kein Geschäftsprozess, keine Kommunikation zwischen Geschäftspartnern, keine Wertschöpfung statt, ohne dass die involvierten Personen, Maschinen und IT-Systeme Daten nutzen, erzeugen oder verändern. Trends wie die Digitalisierung, Industrie 4.0 und Social Media tragen ebenfalls dazu bei, dass Datenmanagement zu einer Kernkompetenz für erfolgreiche Unternehmen dieser Zeit geworden ist. Damit Daten ihren ganzen Wert entfalten können, müssen sie stets in angemessener Qualität zur Verfügung stehen. Dies gilt besonders für Stammdaten, die zentralen Geschäftsobjekte eines Unternehmens. Dieses Buch zeigt einen ganzheitlichen Ansatz zum qualitätsbewussten Management von Stammdaten auf und richtet sich damit sowohl an Praktiker als auch an die Wissenschaft. Das „Framework für Stammdatenqualitätsmanagement“ wurde im Rahmen des „Competence Center Corporate Data Quality“ der Universität St. Gallen seit dem Jahr 2006 gemeinsam mit Unternehmen aus unterschiedlichen Industrien in zahlreichen praktischen Anwendungen entwickelt und verbessert. Neben den theoretischen Grundlagen räumt das Buch der praktischen Sicht mit 10 Fallstudien großen Raum ein, die erfolgreich durchgeführte Datenqualitätsprojekte praxisnah aufbereiten. Schließlich führt das Buch noch Methoden und Werkzeuge für das Datenqualitätsmanagement auf, die (Stamm-)datenmanager bei Projekten im eigenen betrieblichen Umfeld unterstützen können.