Download data mining for the masses second edition with implementations in rapidminer and r in pdf or read data mining for the masses second edition with implementations in rapidminer and r in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get data mining for the masses second edition with implementations in rapidminer and r in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Data Mining For The Masses Second Edition

Author: Matthew North
Publisher:
ISBN: 9781523321438
Size: 25.86 MB
Format: PDF, ePub
View: 2604
Download and Read
We live in a world that generates tremendous amounts of data-more than ever before. In business, and in our personal lives, we use smartphones and tablets, web sites and watches; with dozens of apps and interfaces to shop, learn, entertain and inform. Businesses increasingly use technology to interact with consumers to provide marketing, customer service, product information and more. All of this technological activity generates data-data that can be useful in many ways. Data mining can help to identify interesting patterns and messages that exist, often hidden beneath the surface. In this modern age of information systems, it is easier than ever before to extract meaning from data. From classification to prediction, data mining can help. In Data Mining for the Masses, Second Edition, professor Matt North-a former risk analyst and software engineer at eBay-uses simple examples and clear explanations with free, powerful software tools to teach you the basics of data mining. In this Second Edition, implementations of these examples are offered in both an updated version of the RapidMiner software, and in the popular R Statistical Package. You've got more data than ever before and you know it's got value, if only you can figure out how to get to it. This book can show you how. Let's start digging! Author's Note: The first edition of this text continues to be available for download, free of charge as a PDF file, from the GlobalText online library.

Data Mining For The Masses

Author: Matthew North
Publisher:
ISBN: 9780615684376
Size: 49.51 MB
Format: PDF, ePub
View: 6264
Download and Read
Have you ever found yourself working with a spreadsheet full of data and wishing you could make more sense of the numbers? Have you reviewed sales or operations reports, wondering if there's a better way to anticipate your customers' needs? Perhaps you've even thought to yourself: There's got to be more to these figures than what I'm seeing! Data Mining can help, and you don't need a Ph.D. in Computer Science to do it. You can forecast staffing levels, predict demand for inventory, even sift through millions of lines of customer emails looking for common themes-all using data mining. It's easier than you might think. In Data Mining for the Masses, professor Matt North-a former risk analyst and database developer for eBay.com-uses simple examples, clear explanations and free, powerful, easy-to-use software to teach you the basics of data mining; techniques that can help you answer some of your toughest business questions. You've got data and you know it's got value, if only you can figure out how to unlock it. This book can show you how. Let's start digging! Through an agreement with the Global Text Project, an electronic version of this text is available online at (http://globaltext.terry.uga.edu/books). Proceeds from the sales of printed copies through Amazon enable the author to support the Global Text Project's goal of making electronic texts available to students in developing economies.

Rapidminer

Author: Markus Hofmann
Publisher: CRC Press
ISBN: 1482205505
Size: 64.84 MB
Format: PDF, Kindle
View: 1596
Download and Read
Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

Predictive Analytics And Data Mining

Author: Vijay Kotu
Publisher: Morgan Kaufmann
ISBN: 0128016507
Size: 61.15 MB
Format: PDF, Docs
View: 4507
Download and Read
Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Stats With Cats

Author: Charles Kufs
Publisher: Wheatmark, Inc.
ISBN: 1604944722
Size: 35.54 MB
Format: PDF, Mobi
View: 1645
Download and Read
When you took statistics in school, your instructor gave you specially prepared datasets, told you what analyses to perform, and checked your work to see if it was correct. Once you left the class, though, you were on your own. Did you know how to create and prepare a dataset for analysis? Did you know how to select and generate appropriate graphics and statistics? Did you wonder why you were forced to take the class and when you would ever use what you learned? That's where "Stats with Cats" can help you out. The book will show you: How to decide what you should put in your dataset and how to arrange the data.How to decide what graphs and statistics to produce for your data.How you can create a statistical model to answer your data analysis questions. The book also provides enough feline support to minimize any stress you may experience. Charles Kufs has been crunching numbers for over thirty years, first as a hydrogeologist, and since the 1990s as a statistician. He is certified as a Six Sigma Green Belt by the American Society for Quality. He currently works as a statistician for the federal government and he is here to help you.

Mining Of Massive Datasets

Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Size: 21.39 MB
Format: PDF, Mobi
View: 3061
Download and Read
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Data Mining With Rattle And R

Author: Graham Williams
Publisher: Springer Science & Business Media
ISBN: 144199890X
Size: 33.43 MB
Format: PDF
View: 6184
Download and Read
Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

R And Data Mining

Author: Yanchang Zhao
Publisher: Academic Press
ISBN: 012397271X
Size: 28.47 MB
Format: PDF, ePub, Docs
View: 3953
Download and Read
R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. Presents an introduction into using R for data mining applications, covering most popular data mining techniques Provides code examples and data so that readers can easily learn the techniques Features case studies in real-world applications to help readers apply the techniques in their work

Exploring Data With Rapidminer

Author: Andrew Chisholm
Publisher: Packt Publishing Ltd
ISBN: 1782169342
Size: 12.94 MB
Format: PDF
View: 1693
Download and Read
A step-by-step tutorial style using examples so that users of different levels will benefit from the facilities offered by RapidMiner.If you are a computer scientist or an engineer who has real data from which you want to extract value, this book is ideal for you. You will need to have at least a basic awareness of data mining techniques and some exposure to RapidMiner.

Data Mining For Business Intelligence

Author: Galit Shmueli
Publisher: John Wiley and Sons
ISBN: 1118126041
Size: 12.39 MB
Format: PDF, Kindle
View: 3931
Download and Read
Praise for the First Edition " full of vivid and thought-provoking anecdotes needs to be read by anyone with a serious interest in research and marketing." —Research magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining a welcome addition to the literature." —computingreviews.com Incorporating a new focus on data visualization and time series forecasting, Data Mining for Business Intelligence, Second Edition continues to supply insightful, detailed guidance on fundamental data mining techniques. This new edition guides readers through the use of the Microsoft Office Excel add-in XLMiner for developing predictive models and techniques for describing and finding patterns in data. From clustering customers into market segments and finding the characteristics of frequent flyers to learning what items are purchased with other items, the authors use interesting, real-world examples to build a theoretical and practical understanding of key data mining methods, including classification, prediction, and affinity analysis as well as data reduction, exploration, and visualization. The Second Edition now features: Three new chapters on time series forecasting, introducing popular business forecasting methods including moving average, exponential smoothing methods; regression-based models; and topics such as explanatory vs. predictive modeling, two-level models, and ensembles A revised chapter on data visualization that now features interactive visualization principles and added assignments that demonstrate interactive visualization in practice Separate chapters that each treat k-nearest neighbors and Naïve Bayes methods Summaries at the start of each chapter that supply an outline of key topics The book includes access to XLMiner, allowing readers to work hands-on with the provided data. Throughout the book, applications of the discussed topics focus on the business problem as motivation and avoid unnecessary statistical theory. Each chapter concludes with exercises that allow readers to assess their comprehension of the presented material. The final chapter includes a set of cases that require use of the different data mining techniques, and a related Web site features data sets, exercise solutions, PowerPoint slides, and case solutions. Data Mining for Business Intelligence, Second Edition is an excellent book for courses on data mining, forecasting, and decision support systems at the upper-undergraduate and graduate levels. It is also a one-of-a-kind resource for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.