Download data mining with rattle and r the art of excavating data for knowledge discovery use r in pdf or read data mining with rattle and r the art of excavating data for knowledge discovery use r in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get data mining with rattle and r the art of excavating data for knowledge discovery use r in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Data Mining With Rattle And R

Author: Graham Williams
Publisher: Springer Science & Business Media
ISBN: 144199890X
Size: 57.43 MB
Format: PDF, ePub, Mobi
View: 3116
Download and Read
Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.

Smart Data Analytics

Author: Andreas Wierse
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110461919
Size: 16.89 MB
Format: PDF, ePub, Mobi
View: 6517
Download and Read
Wenn in Datenbergen wertvolle Geheimnisse schlummern, aus denen Profit erzielt werden soll, dann geht es um Big Data. Doch wie schöpft man aus »großen Daten« echte Werte, wenn man nicht gerade Google ist? Um aus Unternehmens-, Maschinen- oder Sensordaten einen Ertrag zu erzielen, reicht Big Data-Technologie allein nicht aus. Entscheidend sind die übergeordneten Innovations prozesse: die smarte Analyse von Big Data. Erst durch den kompetenten Einsatz der richtigen Werkzeuge und Techniken werden aus Big Data tatsächlich Smart Data. Das Praxishandbuch Smart Data Analytics gibt einen Überblick über die Technologie, die bei der Analyse von großen und heterogenen Datenmengen – inklusive Echtzeitdaten – zum Einsatz kommt. Elf Praxisbeispiele zeigen die konkrete Anwendung in kleinen und mittelständischen Unternehmen. So erfahren Sie, wie Sie Ihr Smart Data Analytics-Projekt in Ihrem eigenen Unternehmen vorbereiten und umsetzen können. Das Buch erläutert neben den organisatorischen Aspekten auch die rechtlichen Rahmenbedingungen. Und es zeigt, wie Sie sowohl den Nutzen bewerten können, der aus den Daten gezogen werden soll, als auch den Aufwand, den Sie dafür betreiben müssen. Denn Smart Data steht für mehr als nur die Untersuchung großer Datenmengen: Smart Data Analytics ist der Schlüssel zu einem smarten Umgang mit Ihren Unternehmensdaten und hilft, bislang unentdecktes Potenzial zu entdecken. Dr. Andreas Wierse studierte Mathematik und promovierte in den Ingenieurwissenschaften im Bereich Visualisierung, seit 2011 unterstützt er mittelständische Unternehmen rund um Big und Smart Data Technologie. Dr. Till Riedel lehrt als Informatiker am KIT und koordiniert im Smart Data Solution Center Baden-Württemberg und Smart Data Innovation Lab Forschung und Innovation auf industriellen Datenschätzen.

Journeys To Data Mining

Author: Mohamed Medhat Gaber
Publisher: Springer Science & Business Media
ISBN: 3642280471
Size: 33.39 MB
Format: PDF, ePub, Mobi
View: 6045
Download and Read
Data mining, an interdisciplinary field combining methods from artificial intelligence, machine learning, statistics and database systems, has grown tremendously over the last 20 years and produced core results for applications like business intelligence, spatio-temporal data analysis, bioinformatics, and stream data processing. The fifteen contributors to this volume are successful and well-known data mining scientists and professionals. Although by no means an exhaustive list, all of them have helped the field to gain the reputation and importance it enjoys today, through the many valuable contributions they have made. Mohamed Medhat Gaber has asked them (and many others) to write down their journeys through the data mining field, trying to answer the following questions: 1. What are your motives for conducting research in the data mining field? 2. Describe the milestones of your research in this field. 3. What are your notable success stories? 4. How did you learn from your failures? 5. Have you encountered unexpected results? 6. What are the current research issues and challenges in your area? 7. Describe your research tools and techniques. 8. How would you advise a young researcher to make an impact? 9. What do you predict for the next two years in your area? 10. What are your expectations in the long term? In order to maintain the informal character of their contributions, they were given complete freedom as to how to organize their answers. This narrative presentation style provides PhD students and novices who are eager to find their way to successful research in data mining with valuable insights into career planning. In addition, everyone else interested in the history of computer science may be surprised about the stunning successes and possible failures computer science careers (still) have to offer.

R For Business Analytics

Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443423
Size: 49.30 MB
Format: PDF, Mobi
View: 6122
Download and Read
R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics. This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.

Data Mining Algorithms

Author: Pawel Cichosz
Publisher: John Wiley & Sons
ISBN: 1118950801
Size: 79.70 MB
Format: PDF, Docs
View: 6714
Download and Read
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

Data Mining And Business Analytics With R

Author: Johannes Ledolter
Publisher: John Wiley & Sons
ISBN: 1118572157
Size: 72.71 MB
Format: PDF, ePub
View: 658
Download and Read
Collecting, analyzing, and extracting valuable information froma large amount of data requires easily accessible, robust,computational and analytical tools. Data Mining and BusinessAnalytics with R utilizes the open source software R for theanalysis, exploration, and simplification of large high-dimensionaldata sets. As a result, readers are provided with the neededguidance to model and interpret complicated data and become adeptat building powerful models for prediction and classification. Highlighting both underlying concepts and practicalcomputational skills, Data Mining and Business Analytics withR begins with coverage of standard linear regression and theimportance of parsimony in statistical modeling. The book includesimportant topics such as penalty-based variable selection (LASSO);logistic regression; regression and classification trees;clustering; principal components and partial least squares; and theanalysis of text and network data. In addition, the bookpresents: • A thorough discussion and extensive demonstration of thetheory behind the most useful data mining tools • Illustrations of how to use the outlined concepts inreal-world situations • Readily available additional data sets and related Rcode allowing readers to apply their own analyses to the discussedmaterials • Numerous exercises to help readers with computing skillsand deepen their understanding of the material Data Mining and Business Analytics with R is an excellentgraduate-level textbook for courses on data mining and businessanalytics. The book is also a valuable reference for practitionerswho collect and analyze data in the fields of finance, operationsmanagement, marketing, and the information sciences.

Learning R

Author: Richard Cotton
Publisher: "O'Reilly Media, Inc."
ISBN: 1449357180
Size: 73.99 MB
Format: PDF, ePub, Mobi
View: 4163
Download and Read
Learn how to perform data analysis with the R language and software environment, even if you have little or no programming experience. With the tutorials in this hands-on guide, you’ll learn how to use the essential R tools you need to know to analyze data, including data types and programming concepts. The second half of Learning R shows you real data analysis in action by covering everything from importing data to publishing your results. Each chapter in the book includes a quiz on what you’ve learned, and concludes with exercises, most of which involve writing R code. Write a simple R program, and discover what the language can do Use data types such as vectors, arrays, lists, data frames, and strings Execute code conditionally or repeatedly with branches and loops Apply R add-on packages, and package your own work for others Learn how to clean data you import from a variety of sources Understand data through visualization and summary statistics Use statistical models to pass quantitative judgments about data and make predictions Learn what to do when things go wrong while writing data analysis code

R In A Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Size: 23.64 MB
Format: PDF, Mobi
View: 3236
Download and Read
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.