Download data structure and algorithmic thinking with python data structure and algorithmic puzzles in pdf or read data structure and algorithmic thinking with python data structure and algorithmic puzzles in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get data structure and algorithmic thinking with python data structure and algorithmic puzzles in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Data Structure And Algorithmic Thinking With Python

Author: Narasimha Karumanchi
Publisher: Careermonk Publications
ISBN: 9788192107592
Size: 56.91 MB
Format: PDF, ePub
View: 4467
Download and Read
It is the Python version of "Data Structures and Algorithms Made Easy." Table of Contents: goo.gl/VLEUca Sample Chapter: goo.gl/8AEcYk Source Code: goo.gl/L8Xxdt The sample chapter should give you a very good idea of the quality and style of our book. In particular, be sure you are comfortable with the level and with our Python coding style. This book focuses on giving solutions for complex problems in data structures and algorithm. It even provides multiple solutions for a single problem, thus familiarizing readers with different possible approaches to the same problem. "Data Structure and Algorithmic Thinking with Python" is designed to give a jump-start to programmers, job hunters and those who are appearing for exams. All the code in this book are written in Python. It contains many programming puzzles that not only encourage analytical thinking, but also prepares readers for interviews. This book, with its focused and practical approach, can help readers quickly pick up the concepts and techniques for developing efficient and effective solutions to problems. Topics covered include: Organization of Chapters Introduction Recursion and Backtracking Linked Lists Stacks Queues Trees Priority Queues and Heaps Disjoint Sets ADT Graph Algorithms Sorting Searching Selection Algorithms [Medians] Symbol Tables Hashing String Algorithms Algorithms Design Techniques Greedy Algorithms Divide and Conquer Algorithms Dynamic Programming Complexity Classes Hacks on Bit-wise Programming Other Programming Questions

Algorithmen Und Datenstrukturen

Author: Thomas Ottmann
Publisher: Springer-Verlag
ISBN: 3827428041
Size: 79.90 MB
Format: PDF, Docs
View: 5679
Download and Read
Dieses bestens eingeführte Lehrbuch wendet sich an Studierende der Informatik in Grund- und Hauptstudium. Es behandelt gut verständlich alle Themen, die üblicherweise in der Standardvorlesung "Algorithmen und Datenstrukturen” vermittelt werden. Die einzelnen Algorithmen werden theoretisch fundiert dargestellt; ihre Funktionsweise wird ausführlich anhand vieler Beispiele erläutert. Zusätzlich zur halbformalen Beschreibung werden wichtige Algorithmen in Java formuliert. Das Themenspektrum reicht von Algorithmen zum Suchen und Sortieren über Hashverfahren, Bäume, Manipulation von Mengen bis hin zu Geometrischen Algorithmen und Graphenalgorithmen. Dabei werden sowohl der Entwurf effizienter Algorithmen und Datenstrukturen als auch die Analyse ihres Verhaltens mittels mathematischer Methoden behandelt. Durch eine übersichtliche Gliederung, viele Abbildungen und eine präzise Sprache gelingt den Autoren in vorbildlicher Weise die Vermittlung des vielschichtigen Themengebiets. Die 5. Auflage ist vollständig durchgesehen und überarbeitet. Neu aufgenommen wurden Einführungen in die Themen Dynamisches Programmieren, Backtracking, Onlinealgorithmen, Approximationsalgorithmen sowie einige Algorithmen für spezielle Probleme wie die schnelle Multiplikation von Matrizen, von ganzen Zahlen, und die Konstruktion der konvexen Hülle von Punkten in der Ebene. Das Buch eignet sich zur Vorlesungsbegleitung, zum Selbststudium und zum Nachschlagen. Eine Vielzahl von Aufgaben dient der weiteren Vertiefung des Gelernten. Unter http://ad.informatik.uni-freiburg.de/bibliothek/books/ad-buch/ werden Java-Programme für die wichtigsten Algorithmen und ergänzende Materialien zum Buch bereitgestellt.

Algorithmen Eine Einf Hrung

Author: Thomas H. Cormen
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110522012
Size: 26.83 MB
Format: PDF, ePub, Docs
View: 6718
Download and Read
Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Programmieren Lernen Mit Python

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868999477
Size: 25.14 MB
Format: PDF, ePub
View: 4454
Download and Read
Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.

Programmierung Algorithmen Und Datenstrukturen

Author: Heinz-Peter Gumm
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110442264
Size: 52.72 MB
Format: PDF, ePub, Docs
View: 6718
Download and Read
Each volume of this introductory work stands alone, discussing the fundamentals of its respective topic area. The first volume explains algorithms, programming, and data system, imparting knowledge that every beginner in computer science needs to know. The text covers modern fields of application, such as internet programming with Python and Java, as well as the programming of mini-computers.

Visualize This

Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 3527760229
Size: 36.23 MB
Format: PDF, ePub, Mobi
View: 2557
Download and Read
A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.

Algorithmen F R Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 3527809775
Size: 39.60 MB
Format: PDF
View: 7547
Download and Read
Wir leben in einer algorithmenbestimmten Welt. Deshalb lohnt es sich zu verstehen, wie Algorithmen arbeiten. Das Buch präsentiert die wichtigsten Anwendungsgebiete für Algorithmen: Optimierung, Sortiervorgänge, Graphentheorie, Textanalyse, Hashfunktionen. Zu jedem Algorithmus werden jeweils Hintergrundwissen und praktische Grundlagen vermittelt sowie Beispiele für aktuelle Anwendungen gegeben. Für interessierte Leser gibt es Umsetzungen in Python, sodass die Algorithmen auch verändert und die Auswirkungen der Veränderungen beobachtet werden können. Dieses Buch richtet sich an Menschen, die an Algorithmen interessiert sind, ohne eine Doktorarbeit zu dem Thema schreiben zu wollen. Wer es gelesen hat, versteht, wie wichtige Algorithmen arbeiten und wie man von dieser Arbeit beispielsweise bei der Entwicklung von Unternehmensstrategien profitieren kann.

Statistik Workshop F R Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 39.28 MB
Format: PDF, ePub, Mobi
View: 2563
Download and Read
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.