Download design and analysis of dna microarray investigations statistics for biology and health in pdf or read design and analysis of dna microarray investigations statistics for biology and health in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get design and analysis of dna microarray investigations statistics for biology and health in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Design And Analysis Of Dna Microarray Investigations

Author: Richard M. Simon
Publisher: Springer Science & Business Media
ISBN: 0387218661
Size: 39.37 MB
Format: PDF, Kindle
View: 7689
Download and Read
The analysis of gene expression profile data from DNA micorarray studies are discussed in this book. It provides a review of available methods and presents it in a manner that is intelligible to biologists. It offers an understanding of the design and analysis of experiments utilizing microarrays to benefit scientists. It includes an Appendix tutorial on the use of BRB-ArrayTools and step by step analyses of several major datasets using this software which is available from the National Cancer Institute.

All Of Statistics

Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Size: 72.20 MB
Format: PDF, ePub, Mobi
View: 6047
Download and Read
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Survival Analysis

Author: David G. Kleinbaum
Publisher: Springer Science & Business Media
ISBN: 9780387239187
Size: 38.32 MB
Format: PDF, ePub, Mobi
View: 5222
Download and Read
This greatly expanded second edition of Survival Analysis- A Self-learning Text provides a highly readable description of state-of-the-art methods of analysis of survival/event-history data. This text is suitable for researchers and statisticians working in the medical and other life sciences as well as statisticians in academia who teach introductory and second-level courses on survival analysis. The second edition continues to use the unique "lecture-book" format of the first (1996) edition with the addition of three new chapters on advanced topics: Chapter 7: Parametric Models Chapter 8: Recurrent events Chapter 9: Competing Risks. Also, the Computer Appendix has been revised to provide step-by-step instructions for using the computer packages STATA (Version 7.0), SAS (Version 8.2), and SPSS (version 11.5) to carry out the procedures presented in the main text. The original six chapters have been modified slightly to expand and clarify aspects of survival analysis in response to suggestions by students, colleagues and reviewers, and to add theoretical background, particularly regarding the formulation of the (partial) likelihood functions for proportional hazards, stratified, and extended Cox regression models David Kleinbaum is Professor of Epidemiology at the Rollins School of Public Health at Emory University, Atlanta, Georgia. Dr. Kleinbaum is internationally known for innovative textbooks and teaching on epidemiological methods, multiple linear regression, logistic regression, and survival analysis. He has provided extensive worldwide short-course training in over 150 short courses on statistical and epidemiological methods. He is also the author of ActivEpi (2002), an interactive computer-based instructional text on fundamentals of epidemiology, which has been used in a variety of educational environments including distance learning. Mitchel Klein is Research Assistant Professor with a joint appointment in the Department of Environmental and Occupational Health (EOH) and the Department of Epidemiology, also at the Rollins School of Public Health at Emory University. Dr. Klein is also co-author with Dr. Kleinbaum of the second edition of Logistic Regression- A Self-Learning Text (2002). He has regularly taught epidemiologic methods courses at Emory to graduate students in public health and in clinical medicine. He is responsible for the epidemiologic methods training of physicians enrolled in Emorya??s Master of Science in Clinical Research Program, and has collaborated with Dr. Kleinbaum both nationally and internationally in teaching several short courses on various topics in epidemiologic methods.

Dna Microarrays And Related Genomics Techniques

Author: David B. Allison
Publisher: CRC Press
ISBN: 1420028790
Size: 55.71 MB
Format: PDF, ePub, Mobi
View: 305
Download and Read
Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches to analyzing microarray data has gone from almost none to hundreds if not thousands. This overwhelming deluge is quite daunting to either the applied investigator looking for methodologies or the methodologist trying to keep up with the field. DNA Microarrays and Related Genomics Techniques: Design, Analysis, and Interpretation of Experiments consolidates discussions of methodological advances into a single volume. The book’s structure parallels the steps an investigator or an analyst takes when conducting and analyzing a microarray experiment from conception to interpretation. It begins with foundational issues such as ensuring the quality and integrity of the data and assessing the validity of the statistical models employed, then moves on to cover critical aspects of designing a microarray experiment. The book includes discussions of power and sample size, where only very recently have developments allowed such calculations in a high dimensional context, followed by several chapters covering the analysis of microarray data. The amount of space devoted to this topic reflects both the variety of topics and the effort investigators have devoted to developing new methodologies. In closing, the book explores the intellectual frontier – interpretation of microarray data. It discusses new methods for facilitating and affecting formalization of the interpretation process and the movement to make large high dimensional datasets public for further analysis, and methods for doing so. There is no question that this field will continue to advance rapidly and some of the specific methodologies discussed in this book will be replaced by new advances. Nevertheless, the field is now at a point where a foundation of key categories of methods has been laid out and begun to settle. Although the details may change, the majority of the principles described in this book and the foundational categories it contains will stand the test of time, making the book a touchstone for researchers in this field.

The Statistical Analysis Of Functional Mri Data

Author: Nicole Lazar
Publisher: Springer Science & Business Media
ISBN: 0387781919
Size: 23.81 MB
Format: PDF, ePub, Docs
View: 5567
Download and Read
The study of brain function is one of the most fascinating pursuits of m- ern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The exci- ment of studying the brain is recognized in both the popular press and the scienti?c community. In the pages of mainstream publications, including The New York Times and Wired, readers can learn about cutting-edge research into topics such as understanding how customers react to products and - vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New York Times,October19,2004),howviewersrespondtocampaignads(“Using M. R. I. ’s to see politics on the brain,” The New York Times, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” Wired, November 12,2007),howmen and womenreactto sexualstimulation (“Brain scans arouse researchers,”Wired, April 19, 2004), distinguishing lies from the truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for - stance, a Time magazine cover story from May 6, 2002, entitled “Inside the world of autism”).

The Statistical Analysis Of Recurrent Events

Author: Richard J. Cook
Publisher: Springer Science & Business Media
ISBN: 0387698094
Size: 46.38 MB
Format: PDF, ePub, Docs
View: 4399
Download and Read
This book presents models and statistical methods for the analysis of recurrent event data. The authors provide broad, detailed coverage of the major approaches to analysis, while emphasizing the modeling assumptions that they are based on. More general intensity-based models are also considered, as well as simpler models that focus on rate or mean functions. Parametric, nonparametric and semiparametric methodologies are all covered, with procedures for estimation, testing and model checking.

Survival And Event History Analysis

Author: Odd Aalen
Publisher: Springer Science & Business Media
ISBN: 038768560X
Size: 46.55 MB
Format: PDF, ePub, Docs
View: 137
Download and Read
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.

Dna Microarrays Gene Expression Applications

Author: Bertrand Jordan
Publisher: Springer Science & Business Media
ISBN: 3642565174
Size: 18.84 MB
Format: PDF
View: 3805
Download and Read
This complete and practical manual on expression measurement using DNA arrays covers the existing methods (from nylon macroarrays to oligonucleotide chips) and includes detailed protocols. It has been written by practising scientists who have experienced the difficulties involved in actually using microarrays, and provides helpful advice and hints on setting up these powerful but sometimes tricky methods. Software, data mining procedures and probable future developments, which should be useful to any practising scientist interested in expression measurement, are also covered in this book.

Statistical Analysis Of Next Generation Sequencing Data

Author: Somnath Datta
Publisher: Springer
ISBN: 3319072129
Size: 35.39 MB
Format: PDF, Docs
View: 6999
Download and Read
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.