Download design of high performance microprocessor circuits in pdf or read design of high performance microprocessor circuits in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get design of high performance microprocessor circuits in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Design Of High Performance Microprocessor Circuits

Author: Anantha Chandrakasan
Publisher: Wiley-IEEE Press
ISBN: 9780780360013
Size: 67.57 MB
Format: PDF, ePub, Docs
View: 1177
Download and Read
The authors present readers with a compelling, one-stop, advanced system perspective on the intrinsic issues of digital system design. This invaluable reference prepares readers to meet the emerging challenges of the device and circuit issues associated with deep submicron technology. It incorporates future trends with practical, contemporary methodologies.

High Performance Energy Efficient Microprocessor Design

Author: Vojin G. Oklobdzija
Publisher: Springer Science & Business Media
ISBN: 0387340475
Size: 40.20 MB
Format: PDF
View: 238
Download and Read
Written by the world’s most prominent microprocessor design leaders from industry and academia, this book provides complete coverage of all aspects of complex microprocessor design: technology, power management, clocking, high-performance architecture, design methodologies, memory and I/O design, computer aided design, testing and design for testability. The chapters provide state-of-the-art knowledge while including sufficient tutorial material to bring non-experts up to speed. A useful companion to design engineers working in related areas.

Skew Tolerant Circuit Design

Author: David Harris
Publisher: Morgan Kaufmann
ISBN: 155860636X
Size: 60.50 MB
Format: PDF, ePub, Mobi
View: 1081
Download and Read
As advances in technology and circuit design boost operating frequencies of microprocessors, DSPs and other fast chips, new design challenges continue to emerge. One of the major performance limitations in today's chip designs is clock skew, the uncertainty in arrival times between a pair of clocks. Increasing clock frequencies are forcing many engineers to rethink their timing budgets and to use skew-tolerant circuit techniques for both domino and static circuits. While senior designers have long developed their own techniques for reducing the sequencing overhead of domino circuits, this knowledge has routinely been protected as trade secret and has rarely been shared. Skew-Tolerant Circuit Design presents a systematic way of achieving the same goal and puts it in the hands of all designers. This book clearly presents skew-tolerant techniques and shows how they address the challenges of clocking, latching, and clock skew. It provides the practicing circuit designer with a clearly detailed tutorial and an insightful summary of the most recent literature on these critical clock skew issues. * Synthesizes the most recent advances in skew-tolerant design in one cohesive tutorial * Provides incisive instruction and advice punctuated by humorous illustrations * Includes exercises to test understanding of key concepts and solutions to selected exercises

High Performance Energy Efficient Microprocessor Design

Author: Vojin G. Oklobdzija
Publisher: Springer Science & Business Media
ISBN: 0387340475
Size: 14.24 MB
Format: PDF, Docs
View: 5683
Download and Read
Written by the world’s most prominent microprocessor design leaders from industry and academia, this book provides complete coverage of all aspects of complex microprocessor design: technology, power management, clocking, high-performance architecture, design methodologies, memory and I/O design, computer aided design, testing and design for testability. The chapters provide state-of-the-art knowledge while including sufficient tutorial material to bring non-experts up to speed. A useful companion to design engineers working in related areas.

Design Of High Performance Cmos Voltage Controlled Oscillators

Author: Liang Dai
Publisher: Springer Science & Business Media
ISBN: 9781402072383
Size: 76.90 MB
Format: PDF, Kindle
View: 3574
Download and Read
Voltage-controlled oscillators (VCOs) with low phase noise are the most critical building block in high performance phase-locked loops (PLL). Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present. Design of High-Performance CMOS Voltage-Controlled Oscillators noise, analyzes the impact of the supply and substrate noise on the oscillator phase noise, and suggests techniques for reducing the jitter due to the supply and substrate noise. The primary audience for Design of High-Performance CMOS Voltage-Controlled Oscillators is research workers and design engineers who concentrate on high performance communication circuits. This work will also be of interest to analog circuit designers.

Three Dimensional Integrated Circuit Design

Author: Vasilis F. Pavlidis
Publisher: Newnes
ISBN: 0124104843
Size: 26.75 MB
Format: PDF
View: 905
Download and Read
Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: Manufacturing techniques for 3-D ICs with TSVs Electrical modeling and closed-form expressions of through silicon vias Substrate noise coupling in heterogeneous 3-D ICs Design of 3-D ICs with inductive links Synchronization in 3-D ICs Variation effects on 3-D ICs Correlation of WID variations for intra-tier buffers and wires Offers practical guidance on designing 3-D heterogeneous systems Provides power delivery of 3-D ICs Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more Provides experimental case studies in power delivery, synchronization, and thermal characterization

High Performance System Design

Author: Vojin G. Oklobdzija
Publisher: Wiley-IEEE Press
ISBN:
Size: 32.64 MB
Format: PDF, ePub, Docs
View: 5052
Download and Read
"This comprehensive collection of papers offers you practical information that can be used to develop high-performance digital system design. Specially written introductions by editor Vojin G. Oklobdzija precede each chapter to aid your understanding of the most relevant topics in this advanced area of circuit design. Featured topics include: * Differential pass-transistor logic * High-speed circuits and design of high-performance systems * Advanced deep submicron circuits used in high-speed computers and digital circuits * Clocking and latch design essential to high-performance systems * Relationships between VLSI algorithms and implementation techniques HIGH PERFORMANCE SYSTEM DESIGN: Circuits and Logic is indispensable reading for circuit designers, practicing engineers, and students who want to master the basic principles underlying high-performance system design. This handy, single volume provides a useful reference to a collection of accumulated experience necessary for good, successful designs. Professors: To request an examination copy simply e-mail [email protected]" Sponsored by: IEEE Solid-State Circuits Council/Society.

Microprocessor Architectures And Systems

Author: Steve Heath
Publisher: Newnes
ISBN: 1483278247
Size: 16.88 MB
Format: PDF, ePub, Mobi
View: 6644
Download and Read
Microprocessor Architectures and Systems: RISC, CISC, and DSP focuses on the developments of Motorola's CISC, RISC, and DSP processors and the advancements of the design, functions, and architecture of microprocessors. The publication first ponders on complex instruction set computers and 32-bit CISC processors. Discussions focus on MC68881 and MC68882 floating point coprocessors, debugging support, MC68020 32-bit performance standard, bus interfaces, MC68010 SUPERVISOR resource, and high-level language support. The manuscript then covers the RISC challenge, digital signal processing, and memory management and caches. Topics include implementing memory systems, multitasking and user/supervisor conflicts, partitioning the system, cache size and organization, DSP56000 family, MC88100 programming model, M88000 family, and the 80/20 rule. The text examines the selection of a microprocessor architecture, changing design cycle, semiconductor technology, multiprocessing, and real-time software, interrupts, and exceptions. Concerns include locating associated tasks, MC88100 interrupt service routines, single- and multiple-threaded operating systems, and the MC68300 family. The publication is a valuable reference for computer engineers and researchers interested in microprocessor architectures and systems.

High Speed Cmos Design Styles

Author: Kerry Bernstein
Publisher: Springer Science & Business Media
ISBN: 1461555736
Size: 64.65 MB
Format: PDF, ePub
View: 2445
Download and Read
High Speed CMOS Design Styles is written for the graduate-level student or practicing engineer who is primarily interested in circuit design. It is intended to provide practical reference, or `horse-sense', to mechanisms typically described with a more academic slant. This book is organized so that it can be used as a textbook or as a reference book. High Speed CMOS Design Styles provides a survey of design styles in use in industry, specifically in the high speed microprocessor design community. Logic circuit structures, I/O and interface, clocking, and timing schemes are reviewed and described. Characteristics, sensitivities and idiosyncrasies of each are highlighted. High Speed CMOS Design Styles also pulls together and explains contributors to performance variability that are associated with process, applications conditions and design. Rules of thumb and practical references are offered. Each of the general circuit families is then analyzed for its sensitivity and response to this variability. High Speed CMOS Design Styles is an excellent source of ideas and a compilation of observations that highlight how different approaches trade off critical parameters in design and process space.

Closing The Gap Between Asic Custom

Author: David Chinnery
Publisher: Springer Science & Business Media
ISBN: 1402071132
Size: 31.60 MB
Format: PDF, ePub
View: 7641
Download and Read
This book carefully details design tools and techniques for high-performance ASIC design. Using these techniques, the performance of ASIC designs can be improved by two to three times. Important topics include: Improving performance through microarchitecture; Timing-driven floorplanning; Controlling and exploiting clock skew; High performance latch-based design in an ASIC methodology; Automatically identifying and synthesizing complex logic gates; Automated cell sizing to increase performance and reduce power; Controlling process variation.These techniques are illustrated by designs running two to three times the speed of typical ASICs in the same process generation.