Download dielectric properties of porous media springer series in materials science in pdf or read dielectric properties of porous media springer series in materials science in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get dielectric properties of porous media springer series in materials science in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Dielectric Properties Of Porous Media

Author: S.O. Gladkov
Publisher: Springer Science & Business Media
ISBN: 3662067056
Size: 47.45 MB
Format: PDF, Kindle
View: 6720
Download and Read
This monograph systematically presents the fundamentals of theoretical and experimental research into the most important physical characteristics of porous structures. Non-standard behavior of certain physical parameters, such as the breakdown of the electric field of porous substances, is described. The method of calculation of the thermal conductivity coefficient of porous dielectrics, based on the non-equilibrium principle, is illustrated in detail. This approach is then applied to the investigation of the properties of "disparate" substances such as cellulose matrices, composites, and fibrous structures. The book is intended for physicists, physical chemists and materials scientists at research and postgraduate levels; it may also be helpful to engineers and technical workers in the applied sciences.

Low Dielectric Constant Materials For Ic Applications

Author: Paul S. Ho
Publisher: Springer Science & Business Media
ISBN: 3642559085
Size: 32.93 MB
Format: PDF, ePub, Docs
View: 6906
Download and Read
Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for

Electronic Structure And Magnetism Of Complex Materials

Author: David J. Singh
Publisher: Springer Science & Business Media
ISBN: 3662053101
Size: 16.38 MB
Format: PDF, Mobi
View: 2421
Download and Read
Recent developments in electronic structure theory have led to a new understanding of magnetic materials at the microscopic level. This enables a truly first-principles approach to investigations of technologically important magnetic materials. Among the advances treated here have been practical schemes for handling non-collinear magnetic systems, including relativity, and an understanding of the origins and role of orbital magnetism within band structure formalisms. This book provides deep theoretical insight into magnetism, mahneatic materials, and magnetic systems. It covers these recent developments with review articles by some of the main originators of these developments.

Point Defects In Semiconductors And Insulators

Author: Johann-Martin Spaeth
Publisher: Springer Science & Business Media
ISBN: 3642556159
Size: 13.92 MB
Format: PDF, Docs
View: 5483
Download and Read
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.

Percolation Theory For Flow In Porous Media

Author: Allen Hunt
Publisher: Springer Science & Business Media
ISBN: 3540897895
Size: 43.16 MB
Format: PDF
View: 3514
Download and Read
Why would we wish to start a 2nd edition of “Percolation theory for ?ow in porous media” only two years after the ?rst one was ?nished? There are essentially three reasons: 1) Reviews in the soil physics community have pointed out that the introductory material on percolation theory could have been more accessible. Our additional experience in teaching this material led us to believe that we could improve this aspect of the book. In the context of rewriting the ?rst chapter, however, we also expanded the discussion of Bethe lattices and their relevance for “classical” - ponents of percolation theory, thus giving more of a basis for the discussion of the relevance of hyperscaling. This addition, though it will not tend to make the book more accessible to hydrologists, was useful in making it a more complete reference, and these sections have been marked as being possible to omit in a ?rst reading. It also forced a division of the ?rst chapter into two. We hope that physicists without a background in percolation theory will now also ?nd the - troductory material somewhat more satisfactory. 2) We have done considerable further work on problems of electrical conductivity, thermal conductivity, and electromechanical coupling.

Introduction To The Thermodynamically Constrained Averaging Theory For Porous Medium Systems

Author: William G. Gray
Publisher: Springer Science & Business Media
ISBN: 3319040103
Size: 70.16 MB
Format: PDF, ePub, Mobi
View: 2594
Download and Read
Thermodynamically constrained averaging theory provides a consistent method for upscaling conservation and thermodynamic equations for application in the study of porous medium systems. The method provides dynamic equations for phases, interfaces, and common curves that are closely based on insights from the entropy inequality. All larger scale variables in the equations are explicitly defined in terms of their microscale precursors, facilitating the determination of important parameters and macroscale state equations based on microscale experimental and computational analysis. The method requires that all assumptions that lead to a particular equation form be explicitly indicated, a restriction which is useful in ascertaining the range of applicability of a model as well as potential sources of error and opportunities to improve the analysis.

Porous Semiconductors

Author: Vladimir Kochergin
Publisher: Springer Science & Business Media
ISBN: 1848825781
Size: 50.96 MB
Format: PDF, Docs
View: 5528
Download and Read
Porous Semiconductors: Optical Properties and Applications provides an examination of porous semiconductor materials. Beginning with a description of the basic electrochemistry of porous semiconductors and the different kinds of porous semiconductor materials that can be fabricated, the book moves on to describe the fabrication processes used in the production of porous semiconductor optical components. Concluding the text, a number of optical components based on porous semiconductor materials are discussed in depth. Porous Semiconductors: Optical Properties and Applications provides a thorough grounding in the design, fabrication and theory behind the optical applications of porous semiconductor materials for graduate and undergraduate students interested in optics, photonics, MEMS, and material science. The book is also a valuable reference for scientists, researchers, and engineers in the field of optics and materials science.

Metallopolymer Nanocomposites

Author: A.D. Pomogailo
Publisher: Springer Science & Business Media
ISBN: 9783540209492
Size: 42.42 MB
Format: PDF, ePub, Docs
View: 3604
Download and Read
Highly dispersed nanoscale particles in polymer matrices are currently attracting great interest in many fields of chemistry, physics, and materials science. This book presents and analyzes the essential data on nanoscale metal clusters dispersed in, or chemically bonded with polymers. Special attention is paid to the in situ synthesis of the nanocomposites, their chemical interactions, and the size and distribution of the particles in the polymer matrix. Numerous novel nanocomposites are described with regard to their mechanical, electrophysical, optical, magnetic, catalytic, and biological properties. Their applications, present and future, are outlined. The book is addressed both to researchers who actively use these materials and to students entering this multidisciplinary field.

Wicking In Porous Materials

Author: Reza Masoodi
Publisher: CRC Press
ISBN: 1439874328
Size: 28.65 MB
Format: PDF, ePub, Docs
View: 3877
Download and Read
A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy’s law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard’s Equation) Sharp-front (plug-flow) type approaches using Darcy’s law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.

Metals And Materials

Author: R. E. Smallman
Publisher: Elsevier
ISBN: 1483141039
Size: 36.52 MB
Format: PDF
View: 1789
Download and Read
Metals and Materials: Science, Processes, Applications aims to present the science of materials in a readable and concise form that leads naturally to an explanation of the ways in which materials are processed and applied. The science of metals, or physical metallurgy, has developed naturally into the wider and more diverse discipline of materials science. The study of metals and alloys still forms a large and important part of this relatively new discipline, but it’s common to find that fundamental principles and concepts of physical metallurgy can be adapted to explain the behavior of a variety of non-metallic materials. As an aid to fully study this discipline, each chapter has been supplemented with a list of specialized references. These references include images and diagrams that illustrate the subtleties of materials, such as micrographs of grain structures and fine-scale defects, phase diagrams for metals and ceramics, electron diffraction patterns revealing atomic arrangements, specific property diagrams correlating the behavior of different materials, and slip vector diagrams for deforming crystals. Throughout this book, sufficient background and theory is provided to assist students in answering questions about a large part of a typical degree course in materials science and engineering. Some sections provide a background or point of entry for postgraduate studies and courses.