Download differential equations an introduction with mathematicar undergraduate texts in mathematics in pdf or read differential equations an introduction with mathematicar undergraduate texts in mathematics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get differential equations an introduction with mathematicar undergraduate texts in mathematics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Differential Equations

Author: Clay C. Ross
Publisher: Springer Science & Business Media
ISBN: 1475739494
Size: 46.66 MB
Format: PDF, ePub, Mobi
View: 2615
Download and Read
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.

Partial Differential Equations

Author: Ioannis P. Stavroulakis
Publisher: World Scientific
ISBN: 9789812388155
Size: 61.67 MB
Format: PDF, ePub, Mobi
View: 3302
Download and Read
This textbook is a self-contained introduction to partial differential equations.It has been designed for undergraduates and first year graduate students majoring in mathematics, physics, engineering, or science.The text provides an introduction to the basic equations of mathematical physics and the properties of their solutions, based on classical calculus and ordinary differential equations. Advanced concepts such as weak solutions and discontinuous solutions of nonlinear conservation laws are also considered.

Introduction To Mathematica With Applications

Author: Marian Mureşan
Publisher: Springer
ISBN: 3319520032
Size: 41.83 MB
Format: PDF
View: 6391
Download and Read
Starting with an introduction to the numerous features of Mathematica®, this book continues with more complex material. It provides the reader with lots of examples and illustrations of how the benefits of Mathematica® can be used. Composed of eleven chapters, it includes the following: A chapter on several sorting algorithms Functions (planar and solid) with many interesting examples Ordinary differential equations Advantages of Mathematica® dealing with the Pi number The power of Mathematica® working with optimal control problems Introduction to Mathematica® with Applications will appeal to researchers, professors and students requiring a computational tool.

Differential Equations With Mathematica

Author: Martha L. Abell
Publisher: Academic Press
ISBN: 0128047771
Size: 42.23 MB
Format: PDF, Kindle
View: 6134
Download and Read
Differential Equations with Mathematica, Fourth Edition is a supplementing reference which uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica’s diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica’s built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica’s outstanding graphics capabilities. Demonstrates how to take advantage of the advanced features of Mathematica 10 Introduces the fundamental theory of ordinary and partial differential equations using Mathematica to solve typical problems of interest to students, instructors, scientists, and practitioners in many fields Showcases practical applications and case studies drawn from biology, physics, and engineering

Partial Differential Equations And Mathematica

Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 9781584883142
Size: 75.65 MB
Format: PDF
View: 2213
Download and Read
Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

Introductory Differential Equations

Author: Martha L. Abell
Publisher: Academic Press
ISBN: 9780123846655
Size: 29.64 MB
Format: PDF, Kindle
View: 3092
Download and Read
This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, and Fourier Series. Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries. Because many students need a lot of pencil-and-paper practice to master the essential concepts, the exercise sets are particularly comprehensive with a wide range of exercises ranging from straightforward to challenging. Many different majors will require differential equations and applied mathematics, so there should be a lot of interest in an intro-level text like this. The accessible writing style will be good for non-math students, as well as for undergrad classes.

Introduction To Partial Differential Equations For Scientists And Engineers Using Mathematica

Author: Kuzman Adzievski
Publisher: CRC Press
ISBN: 1466510579
Size: 13.88 MB
Format: PDF, Kindle
View: 3391
Download and Read
With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

Symmetry Analysis Of Differential Equations With Mathematica

Author: Gerd Baumann
Publisher: Springer Science & Business Media
ISBN: 1461221102
Size: 24.13 MB
Format: PDF, Docs
View: 4660
Download and Read
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.

Introduction To Partial Differential Equations

Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 3319020994
Size: 24.54 MB
Format: PDF, ePub, Docs
View: 1050
Download and Read
This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.