Download discrete multivariate analysis theory and practice in pdf or read discrete multivariate analysis theory and practice in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get discrete multivariate analysis theory and practice in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Discrete Multivariate Analysis

Author: Yvonne M. Bishop
Publisher: Springer Science & Business Media
ISBN: 0387728058
Size: 49.92 MB
Format: PDF, Docs
View: 1607
Download and Read
“A welcome addition to multivariate analysis. The discussion is lucid and very leisurely, excellently illustrated with applications drawn from a wide variety of fields. A good part of the book can be understood without very specialized statistical knowledge. It is a most welcome contribution to an interesting and lively subject.” -- Nature Originally published in 1974, this book is a reprint of a classic, still-valuable text.

Statistical Factor Analysis And Related Methods

Author: Alexander T. Basilevsky
Publisher: John Wiley & Sons
ISBN: 0470317736
Size: 75.98 MB
Format: PDF, ePub
View: 3004
Download and Read
Statistical Factor Analysis and Related Methods Theory and Applications In bridging the gap between the mathematical and statistical theory of factor analysis, this new work represents the first unified treatment of the theory and practice of factor analysis and latent variable models. It focuses on such areas as: * The classical principal components model and sample-population inference * Several extensions and modifications of principal components, including Q and three-mode analysis and principal components in the complex domain * Maximum likelihood and weighted factor models, factor identification, factor rotation, and the estimation of factor scores * The use of factor models in conjunction with various types of data including time series, spatial data, rank orders, and nominal variable * Applications of factor models to the estimation of functional forms and to least squares of regression estimators

Studies In Econometrics Time Series And Multivariate Statistics

Author: Samuel Karlin
Publisher: Academic Press
ISBN: 1483268039
Size: 68.93 MB
Format: PDF, Kindle
View: 5380
Download and Read
Studies in Econometrics, Time Series, and Multivariate Statistics covers the theoretical and practical aspects of econometrics, social sciences, time series, and multivariate statistics. This book is organized into three parts encompassing 28 chapters. Part I contains studies on logit model, normal discriminant analysis, maximum likelihood estimation, abnormal selection bias, and regression analysis with a categorized explanatory variable. This part also deals with prediction-based tests for misspecification in nonlinear simultaneous systems and the identification in models with autoregressive errors. Part II highlights studies in time series, including time series analysis of error-correction models, time series model identification, linear random fields, segmentation of time series, and some basic asymptotic theory for linear processes in time series analysis. Part III contains papers on optimality properties in discrete multivariate analysis, Anderson’s probability inequality, and asymptotic distributions of test statistics. This part also presents the comparison of measures, multivariate majorization, and of experiments for some multivariate normal situations. Studies on Bayes procedures for combining independent F tests and the limit theorems on high dimensional spheres and Stiefel manifolds are included. This book will prove useful to statisticians, mathematicians, and advance mathematics students.

Principles Of System Identification

Author: Arun K. Tangirala
Publisher: CRC Press
ISBN: 143989602X
Size: 43.29 MB
Format: PDF
View: 2960
Download and Read
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.

Goodness Of Fit Statistics For Discrete Multivariate Data

Author: Timothy R.C. Read
Publisher: Springer Science & Business Media
ISBN: 1461245788
Size: 53.89 MB
Format: PDF, ePub, Docs
View: 213
Download and Read
The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties.

Discrete Calculus

Author: Leo J. Grady
Publisher: Springer Science & Business Media
ISBN: 9781849962902
Size: 34.99 MB
Format: PDF, Kindle
View: 6850
Download and Read
This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.

Theory Of Multivariate Statistics

Author: Martin Bilodeau
Publisher: Springer Science & Business Media
ISBN: 0387226168
Size: 70.90 MB
Format: PDF, Kindle
View: 1632
Download and Read
Intended as a textbook for students taking a first graduate course in the subject, as well as for the general reference of interested research workers, this text discusses, in a readable form, developments from recently published work on certain broad topics not otherwise easily accessible, such as robust inference and the use of the bootstrap in a multivariate setting. A minimum background expected of the reader would include at least two courses in mathematical statistics, and certainly some exposure to the calculus of several variables together with the descriptive geometry of linear algebra.

Multivariate Dispersion Central Regions And Depth

Author: Karl Mosler
Publisher: Springer Science & Business Media
ISBN: 1461300452
Size: 10.38 MB
Format: PDF, ePub
View: 132
Download and Read
This book has many applications to stochastic comparison problems in economics and other fields. It covers theory of lift zonoids and demonstrates its usefulness in multivariate analysis, an informal introduction to basic ideas, and a comprehensive investigation into the theory, as well as various applications of the lift zonoid approach and may be separately studied. Readers are assumed to have a firm grounding in probability at the graduate level.