Download distributed computing through combinatorial topology in pdf or read distributed computing through combinatorial topology in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get distributed computing through combinatorial topology in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Distributed Computing Through Combinatorial Topology

Author: Maurice Herlihy
Publisher: Newnes
ISBN: 0124047289
Size: 58.76 MB
Format: PDF, Kindle
View: 6115
Download and Read
Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises

Distributed Computing Through Combinatorial Topology

Author: Maurice Herlihy
Publisher: Morgan Kaufmann
ISBN: 9780124045781
Size: 18.16 MB
Format: PDF
View: 3004
Download and Read
Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises

Programming Distributed Computing Systems

Author: Carlos A. Varela
Publisher: MIT Press
ISBN: 0262313367
Size: 13.95 MB
Format: PDF, Docs
View: 3267
Download and Read
Starting from the premise that understanding the foundations of concurrent programming is key to developing distributed computing systems, this book first presents the fundamental theories of concurrent computing and then introduces the programming languages that help develop distributed computing systems at a high level of abstraction. The major theories of concurrent computation -- including the p-calculus, the actor model, the join calculus, and mobile ambients -- are explained with a focus on how they help design and reason about distributed and mobile computing systems. The book then presents programming languages that follow the theoretical models already described, including Pict, SALSA, and JoCaml. The parallel structure of the chapters in both part one (theory) and part two (practice) enable the reader not only to compare the different theories but also to see clearly how a programming language supports a theoretical model. The book is unique in bridging the gap between the theory and the practice of programming distributed computing systems. It can be used as a textbook for graduate and advanced undergraduate students in computer science or as a reference for researchers in the area of programming technology for distributed computing. By presenting theory first, the book allows readers to focus on the essential components of concurrency, distribution, and mobility without getting bogged down in syntactic details of specific programming languages. Once the theory is understood, the practical part of implementing a system in an actual programming language becomes much easier.

The Art Of Multiprocessor Programming

Author: Maurice Herlihy
Publisher: Morgan Kaufmann
ISBN: 0080569587
Size: 53.53 MB
Format: PDF, ePub, Docs
View: 4284
Download and Read
The Art of Multiprocessor Programming promises to be the first comprehensive presentation of the principles and tools available for programming multiprocessor machines. As the computer industry changes from single-processor to multiprocessor architectures, this revolution requires a fundamental change in how programs are written. To leverage the performance and power of multiprocessor programming, also known as multicore programming, programmers need to learn the new principles, algorithms, and tools. The book will be of immediate use to programmers working with the new architectures. For example, the next generation of computer game consoles will all be multiprocessor-based, and the game industry is currently struggling to understand how to address the programming challenges presented by these machines. This change in the industry is so fundamental that it is certain to require a significant response by universities, and courses on multicore programming will become a staple of computer science curriculums. This book includes fully-developed Java examples detailing data structures, synchronization techniques, transactional memory, and more. Students in multiprocessor and multicore programming courses and engineers working with multiprocessor and multicore systems will find this book quite useful. The book on multicore programming, the new paradigm of computer science Written by the world's most revered experts in multiprocessor programming and performance Includes examples, models, exercises, PowerPoint slides, and sample Java programs

Using The Borsuk Ulam Theorem

Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 3540766499
Size: 27.69 MB
Format: PDF, Mobi
View: 4694
Download and Read
To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.

Distributed Computing

Author: David Peleg
Publisher: SIAM
ISBN: 0898714648
Size: 40.50 MB
Format: PDF
View: 6687
Download and Read
Gives a thorough exposition of network spanners and other locality-preserving network representations such as sparse covers and partitions.

Directed Algebraic Topology And Concurrency

Author: Lisbeth Fajstrup
Publisher: Springer
ISBN: 3319153986
Size: 78.85 MB
Format: PDF, ePub, Mobi
View: 4489
Download and Read
This monograph presents an application of concepts and methods from algebraic topology to models of concurrent processes in computer science and their analysis. Taking well-known discrete models for concurrent processes in resource management as a point of departure, the book goes on to refine combinatorial and topological models. In the process, it develops tools and invariants for the new discipline directed algebraic topology, which is driven by fundamental research interests as well as by applications, primarily in the static analysis of concurrent programs. The state space of a concurrent program is described as a higher-dimensional space, the topology of which encodes the essential properties of the system. In order to analyse all possible executions in the state space, more than “just” the topological properties have to be considered: Execution paths need to respect a partial order given by the time flow. As a result, tools and concepts from topology have to be extended to take privileged directions into account. The target audience for this book consists of graduate students, researchers and practitioners in the field, mathematicians and computer scientists alike.

Distributed And Cloud Computing

Author: Kai Hwang
Publisher: Morgan Kaufmann
ISBN: 0128002042
Size: 10.36 MB
Format: PDF
View: 4635
Download and Read
Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online

Combinatorial Algebraic Topology

Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 3540719628
Size: 11.58 MB
Format: PDF, ePub
View: 1147
Download and Read
This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.