Download dynamic impulse systems theory and applications mathematics and its applications in pdf or read dynamic impulse systems theory and applications mathematics and its applications in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get dynamic impulse systems theory and applications mathematics and its applications in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Dynamic Impulse Systems

Author: S.T. Zavalishchin
Publisher: Springer Science & Business Media
ISBN: 9401588937
Size: 18.74 MB
Format: PDF, ePub
View: 5556
Download and Read
A number of optimization problems of the mechanics of space flight and the motion of walking robots and manipulators, and of quantum physics, eco momics and biology, have an irregular structure: classical variational proce dures do not formally make it possible to find optimal controls that, as we explain, have an impulse character. This and other well-known facts lead to the necessity for constructing dynamical models using the concept of a gener alized function (Schwartz distribution). The problem ofthe systematization of such models is very important. In particular, the problem of the construction of the general form of linear and nonlinear operator equations in distributions is timely. Another problem is related to the proper determination of solutions of equations that have nonlinear operations over generalized functions in their description. It is well-known that "the value of a distribution at a point" has no meaning. As a result the problem to construct the concept of stability for generalized processes arises. Finally, optimization problems for dynamic systems in distributions need finding optimality conditions. This book contains results that we have obtained in the above-mentioned directions. The aim of the book is to provide for electrical and mechanical engineers or mathematicians working in applications, a general and systematic treat ment of dynamic systems based on up-to-date mathematical methods and to demonstrate the power of these methods in solving dynamics of systems and applied control problems.

Progress In Partial Differential Equations

Author: Michael Reissig
Publisher: Springer Science & Business Media
ISBN: 3319001256
Size: 13.34 MB
Format: PDF, ePub
View: 5917
Download and Read
Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The readers will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity)

Mathematical Modeling Of Discontinuous Processes

Author: Andrey Antonov
Publisher: Scientific Research Publishing, Inc. USA
ISBN: 1618964402
Size: 67.23 MB
Format: PDF, Mobi
View: 403
Download and Read
In this monograph as a mathematical apparatus are used and investigated several classes of differential equations. The most significant feature of these differential equations is the presence of impulsive effects. The main goals and the results achieved in the monograph are related to the use of this class of equation for an adequate description of the dynamics of several types of processes that are subject to discrete external interventions and change the speed of development. In all proposed models the following requirements have met: 1) Presented and studied mathematical models in the book are extensions of existing known in the literature models of real objects and related processes. 2) Generalizations of the studied models are related to the admission of external impulsive effects, which lead to “jump-like” change the quantity characteristics of the described object as well as the rate of its modification. 3) Sufficient conditions which guarantee certain qualities of the dynamics of the quantities of the modeled objects are found. 4) Studies of the qualities of the modification of the modeled objects are possible to be successful by differential equations with variable structure and impulsive effects. 5) The considerations relating to the existence of the studied properties of dynamic objects cannot be realized without introducing new concepts and proving of appropriate theorems. The main objectives can be conditionally divided into several parts: 1) New classes of differential equations with variable structure and impulses are introduced and studied; 2) Specific properties of the above-mentioned class of differential equations are introduced and studied. The present monograph consists of an introduction and seven chapters. Each chapter contains several sections.

Modern Aspects Of The Theory Of Partial Differential Equations

Author: Michael V. Ruzhansky
Publisher: Springer Science & Business Media
ISBN: 9783034800693
Size: 53.91 MB
Format: PDF, Mobi
View: 3023
Download and Read
The book provides a quick overview of a wide range of active research areas in partial differential equations. The book can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions from authors from a large variety of countries on different aspects of partial differential equations, such as evolution equations and estimates for their solutions, control theory, inverse problems, nonlinear equations, elliptic theory on singular domains, numerical approaches.

Mechanical Vibrations Theory And Applications

Author: S. Graham Kelly
Publisher: Cengage Learning
ISBN: 1439062129
Size: 27.70 MB
Format: PDF, Docs
View: 2535
Download and Read
Mechanical Vibrations: Theory and Applications takes an applications-based approach at teaching students to apply previously learned engineering principles while laying a foundation for engineering design. This text provides a brief review of the principles of dynamics so that terminology and notation are consistent and applies these principles to derive mathematical models of dynamic mechanical systems. The methods of application of these principles are consistent with popular Dynamics texts. Numerous pedagogical features have been included in the text in order to aid the student with comprehension and retention. These include the development of three benchmark problems which are revisited in each chapter, creating a coherent chain linking all chapters in the book. Also included are learning outcomes, summaries of key concepts including important equations and formulae, fully solved examples with an emphasis on real world examples, as well as an extensive exercise set including objective-type questions. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Optimal Reference Shaping For Dynamical Systems

Author: Tarunraj Singh
Publisher: CRC Press
ISBN: 9781439805633
Size: 31.85 MB
Format: PDF, Docs
View: 2394
Download and Read
Integrating feedforward control with feedback control can significantly improve the performance of control systems compared to using feedback control alone. Focusing on feedforward control techniques, Optimal Reference Shaping for Dynamical Systems: Theory and Applications lucidly covers the various algorithms for attenuating residual oscillations that are excited by reference inputs to dynamical systems. The reference shaping techniques presented in the book require the system to be stable or marginally stable, including systems where feedback control has been used to stabilize the system. Illustrates Techniques through Benchmark Problems After developing models for applications in which the dynamics are dominated by lightly damped poles, the book describes the time-delay filter (input shaper) design technique and reviews the calculus of variations. It then focuses on four control problems: time-optimal, fuel/time-optimal, fuel limited time-optimal, and jerk limited time-optimal control. The author explains how the minimax optimization problem can help in the design of robust time-delay filters and explores the input-constrained design of open-loop control profiles that account for friction in the design of point-to-point control profiles. The final chapter presents numerical techniques for solving the problem of designing shaped inputs. Supplying MATLAB® code and a suite of real-world problems, this book provides a rigorous yet accessible presentation of the theory and numerical techniques used to shape control system inputs for achieving precise control when modeling uncertainties exist. It includes up-to-date techniques for the design of command-shaped profiles for precise, robust, and rapid point-to-point control of underdamped systems.