Download exact statistical inference for categorical data in pdf or read exact statistical inference for categorical data in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get exact statistical inference for categorical data in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Exact Statistical Inference For Categorical Data

Author: Guogen Shan
Publisher: Academic Press
ISBN: 0128039485
Size: 23.44 MB
Format: PDF, ePub
View: 5524
Download and Read
Exact Statistical Inference for Categorical Data discusses the way asymptotic approaches have been often used in practice to make statistical inference. This book introduces both conditional and unconditional exact approaches for the data in 2 by 2, or 2 by k contingency tables, and is an ideal reference for users who are interested in having the convenience of applying asymptotic approaches, with less computational time. In addition to the existing conditional exact inference, some efficient, unconditional exact approaches could be used in data analysis to improve the performance of the testing procedure. Demonstrates how exact inference can be used to analyze data in 2 by 2 tables Discusses the analysis of data in 2 by k tables using exact inference Explains how exact inference can be used in genetics

The Statistical Analysis Of Categorical Data

Author: Erling B. Andersen
Publisher: Springer Science & Business Media
ISBN: 364297225X
Size: 62.10 MB
Format: PDF, ePub, Docs
View: 4997
Download and Read
The aim of this book is to give an up to date account of the most commonly uses statist i cal models for categoriCal data. The emphasis is on the connection between theory and appIications to real data sets. The book only covers models for categorical data. Various n:t0dels for mixed continuous and categorical data are thus excluded. The book is written as a textbook, although many methods and results are quite recent. This should imply, that the book can be used for a graduate course in categorical data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer eises. In many cases, the data sets are those data sets, which were not included in the examples of the book, although they at one point in time were regarded as potential can didates for an example. A certain amount of general knowledge of statistical theory is necessary to fully benefit from the book. A summary of the basic statistical concepts deemed necessary pre requisites is given in chapter 2. The mathematical level is only moderately high, but the account in chapter 3 of basic properties of exponential families and the parametric multinomial distribution is made as mathematical preeise as possible without going into mathematical details and leaving out most proofs.

Compstat 2006 Proceedings In Computational Statistics

Author: Alfredo Rizzi
Publisher: Springer Science & Business Media
ISBN: 9783790817096
Size: 33.61 MB
Format: PDF, Mobi
View: 6085
Download and Read
International Association for Statistical Computing The International Association for Statistical Computing (IASC) is a Section of the International Statistical Institute. The objectives of the Association are to foster world-wide interest in e?ective statistical computing and to - change technical knowledge through international contacts and meetings - tween statisticians, computing professionals, organizations, institutions, g- ernments and the general public. The IASC organises its own Conferences, IASC World Conferences, and COMPSTAT in Europe. The 17th Conference of ERS-IASC, the biennial meeting of European - gional Section of the IASC was held in Rome August 28 - September 1, 2006. This conference took place in Rome exactly 20 years after the 7th COMP- STAT symposium which was held in Rome, in 1986. Previous COMPSTAT conferences were held in: Vienna (Austria, 1974); West-Berlin (Germany, 1976); Leiden (The Netherlands, 1978); Edimbourgh (UK, 1980); Toulouse (France, 1982); Prague (Czechoslovakia, 1984); Rome (Italy, 1986); Copenhagen (Denmark, 1988); Dubrovnik (Yugoslavia, 1990); Neuchˆ atel (Switzerland, 1992); Vienna (Austria,1994); Barcelona (Spain, 1996);Bristol(UK,1998);Utrecht(TheNetherlands,2000);Berlin(Germany, 2002); Prague (Czech Republic, 2004).

Categorical Data Analysis

Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 0471458767
Size: 46.48 MB
Format: PDF, Kindle
View: 4151
Download and Read
Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. Categorical Data Analysis was among those chosen. A valuable new edition of a standard reference "A 'must-have' book for anyone expecting to do research and/or applications in categorical data analysis." –Statistics in Medicine on Categorical Data Analysis, First Edition The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. Responding to new developments in the field as well as to the needs of a new generation of professionals and students, this new edition of the classic Categorical Data Analysis offers a comprehensive introduction to the most important methods for categorical data analysis. Designed for statisticians and biostatisticians as well as scientists and graduate students practicing statistics, Categorical Data Analysis, Second Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial regression for discrete data with normal regression for continuous data. Adding to the value in the new edition is coverage of: Three new chapters on methods for repeated measurement and other forms of clustered categorical data, including marginal models and associated generalized estimating equations (GEE) methods, and mixed models with random effects Stronger emphasis on logistic regression modeling of binary and multicategory data An appendix showing the use of SAS for conducting nearly all analyses in the book Prescriptions for how ordinal variables should be treated differently than nominal variables Discussion of exact small-sample procedures More than 100 analyses of real data sets to illustrate application of the methods, and more than 600 exercises An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Exact Statistical Methods For Data Analysis

Author: Samaradasa Weerahandi
Publisher: Springer Science & Business Media
ISBN: 1461208254
Size: 57.22 MB
Format: PDF, Mobi
View: 2761
Download and Read
Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.

Applied Statistical Methods

Author: Irving W. Burr
Publisher: Elsevier
ISBN: 1483277860
Size: 10.38 MB
Format: PDF
View: 7313
Download and Read
Applied Statistical Methods covers the fundamental understanding of statistical methods necessary to deal with a wide variety of practical problems. This 14-chapter text presents the topics covered in a manner that stresses clarity of understanding, interpretation, and method of application. The introductory chapter illustrates the importance of statistical analysis. The next chapters introduce the methods of data summarization, including frequency distributions, cumulative frequency distributions, and measures of central tendency and variability. These topics are followed by discussions of the fundamental principles of probability, the concepts of sample spaces, outcomes, events, probability, independence of events, and the characterization of discrete and continuous random variables. Other chapters explore the distribution of several important statistics; statistical tests of hypotheses; point and interval estimation; and simple linear regression. The concluding chapters review the elements of single- and two-factor analysis of variance and the design of analysis of variance experiments. This book is intended primarily for advanced undergraduate and graduate students in the mathematical, physical, and engineering sciences, as well as in economics, business, and related areas. Researchers and line personnel in industry and government will find this book useful in self-study.

Openintro Statistics

Author: David Diez
Publisher:
ISBN: 9781943450046
Size: 47.18 MB
Format: PDF, Mobi
View: 2261
Download and Read
The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources.

Analyzing Categorical Data

Author: Jeffrey S. Simonoff
Publisher: Springer Science & Business Media
ISBN: 0387217274
Size: 40.66 MB
Format: PDF, Docs
View: 5706
Download and Read
Categorical data arise often in many fields, including biometrics, economics, management, manufacturing, marketing, psychology, and sociology. This book provides an introduction to the analysis of such data. The coverage is broad, using the loglinear Poisson regression model and logistic binomial regression models as the primary engines for methodology. Topics covered include count regression models, such as Poisson, negative binomial, zero-inflated, and zero-truncated models; loglinear models for two-dimensional and multidimensional contingency tables, including for square tables and tables with ordered categories; and regression models for two-category (binary) and multiple-category target variables, such as logistic and proportional odds models. All methods are illustrated with analyses of real data examples, many from recent subject area journal articles. These analyses are highlighted in the text, and are more detailed than is typical, providing discussion of the context and background of the problem, model checking, and scientific implications. More than 200 exercises are provided, many also based on recent subject area literature. Data sets and computer code are available at a web site devoted to the text. Adopters of this book may request a solutions manual from: [email protected] From the reviews: "Jeff Simonoff's book is at the top of the heap of categorical data analysis textbooks...The examples are superb. Student reactions in a class I taught from this text were uniformly positive, particularly because of the examples and exercises. Additional materials related to the book, particularly code for S-Plus, SAS, and R, useful for analysis of examples, can be found at the author's Web site at New York University. I liked this book for this reason, and recommend it to you for pedagogical purposes." (Stanley Wasserman, The American Statistician, August 2006, Vol. 60, No. 3) "The book has various noteworthy features. The examples used are from a variety of topics, including medicine, economics, sports, mining, weather, as well as social aspects like needle-exchange programs. The examples motivate the theory and also illustrate nuances of data analytical procedures. The book also incorporates several newer methods for analyzing categorical data, including zero-inflated Poisson models, robust analysis of binomial and poisson models, sandwich estimators, multinomial smoothing, ordinal agreement tables...this is definitely a good reference book for any researcher working with categorical data." Technometrics, May 2004 "This guide provides a practical approach to the appropriate analysis of categorical data and would be a suitable purchase for individuals with varying levels of statistical understanding." Paediatric and Perinatal Epidemiology, 2004, 18 "This book gives a fresh approach to the topic of categorical data analysis. The presentation of the statistical methods exploits the connection to regression modeling with a focus on practical features rather than formal theory...There is much to learn from this book. Aside from the ordinary materials such as association diagrams, Mantel-Haenszel estimators, or overdispersion, the reader will also find some less-often presented but interesting and stimulating topics...[T]his is an excellent book, giving an up-to-date introduction to the wide field of analyzing categorical data." Biometrics, September 2004 "...It is of great help to data analysts, practitioners and researchers who deal with categorical data and need to get a necessary insight into the methods of analysis as well as practical guidelines for solving problems." International Journal of General Systems, August 2004 "The author has succeeded in writing a useful and readable textbook combining most of general theory and practice of count data." Kwantitatieve Methoden "The book especially stresses how to analyze and interpret data...In fact, the highly detailed multi-page descriptions of analysis and interpretation make the book stand out." Mathematical Geology, February 2005 "Overall, this is a competent and detailed text that I would recommend to anyone dealing with the analysis of categorical data." Journal of the Royal Statistical Society "This important work allows for clear analogies between the well-known linear models for Gaussian data and categorical data problems. ... Jeffrey Simonoff’s Analyzing Categorical Data provides an introduction to many of the important ideas and methods for understanding counted data and tables of counts. ... Some readers will find Simonoff’s style very much to their liking due to reliance on extended real data examples to illuminate ideas. ... I think the extensive examples will appeal to most students." (Sanford Weisberg, SIAM Review, Vol. 47 (4), 2005) "It is clear that the focus of Simonoff’s book is different from other books on categorical data analysis. ... As an introductory textbook, the book is comprehensive enough since all basic topics in categorical data analysis are discussed. ... I think Simonoff’s book is a valuable addition to the literature because it discusses important models for counts ... ." (Jeroen K. Vermunt, Statistics in Medicine, Vol. 24, 2005) "The author based this book on his notes for a class with a very diverse pool of students. The material is presented in such a way that a very heterogeneous group of students could grasp it. All methods are illustrated with analyses of real data examples. The author provides a detailed discussion of the context and background of the problem. ... The book is very interesting and can be warmly recommended to people working with categorical data." (EMS - European Mathematical Society Newsletter, December, 2004) "Categorical data arise often in many fields ... . This book provides an introduction to the analysis of such data. ... All methods are illustrated with analyses of real data examples, many from recent subject-area journal articles. These analyses are highlighted in the text and are more detailed than is typical ... . More than 200 exercises are provided, including many based on recent subject-area literature. Data sets and computer code are available at a Web site devoted to this text." (T. Postelnicu, Zentralblatt MATH, Vol. 1028, 2003) "This book grew out of notes prepared by the author for classes in categorical data analysis. The presentation is fresh and compelling to read. Regression ideas are used to motivate the modelling presented. The book focuses on applying methods to real problems; many of these will be novel to readers of statistics texts ... . All chapters end with a section providing references to books or articles for the inquiring reader." (C.M. O’Brien, Short Book Reviews, Vol. 23 (3), 2003)

Categorical Data Analysis

Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1118710940
Size: 10.62 MB
Format: PDF, ePub
View: 3180
Download and Read
Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.