Download exterior analysis using applications of differential forms in pdf or read exterior analysis using applications of differential forms in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get exterior analysis using applications of differential forms in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Exterior Analysis

Author: Erdogan Suhubi
Publisher: Elsevier
ISBN: 0124159281
Size: 54.99 MB
Format: PDF, ePub, Mobi
View: 5655
Download and Read
Exterior analysis uses differential forms (a mathematical technique) to analyze curves, surfaces, and structures. Exterior Analysis is a first-of-its-kind resource that uses applications of differential forms, offering a mathematical approach to solve problems in defining a precise measurement to ensure structural integrity. The book provides methods to study different types of equations and offers detailed explanations of fundamental theories and techniques to obtain concrete solutions to determine symmetry. It is a useful tool for structural, mechanical and electrical engineers, as well as physicists and mathematicians. Provides a thorough explanation of how to apply differential equations to solve real-world engineering problems Helps researchers in mathematics, science, and engineering develop skills needed to implement mathematical techniques in their research Includes physical applications and methods used to solve practical problems to determine symmetry

Differential Forms And Connections

Author: R. W. R. Darling
Publisher: Cambridge University Press
ISBN: 9780521468008
Size: 79.29 MB
Format: PDF, ePub, Mobi
View: 6117
Download and Read
This book introduces the tools of modern differential geometry--exterior calculus, manifolds, vector bundles, connections--and covers both classical surface theory, the modern theory of connections, and curvature. Also included is a chapter on applications to theoretical physics. The author uses the powerful and concise calculus of differential forms throughout. Through the use of numerous concrete examples, the author develops computational skills in the familiar Euclidean context before exposing the reader to the more abstract setting of manifolds. The only prerequisites are multivariate calculus and linear algebra; no knowledge of topology is assumed. Nearly 200 exercises make the book ideal for both classroom use and self-study for advanced undergraduate and beginning graduate students in mathematics, physics, and engineering.

Applied Exterior Calculus

Author: Dominic G. B. Edelen
Publisher: Courier Corporation
ISBN: 0486438716
Size: 31.25 MB
Format: PDF, Mobi
View: 4671
Download and Read
This text begins with the essentials, advancing to applications and studies of physical disciplines, including classical and irreversible thermodynamics, electrodynamics, and the theory of gauge fields. Geared toward advanced undergraduates and graduate students, it develops most of the theory and requires only a familiarity with upper-division algebra and mathematical analysis. "Essential." — SciTech Book News. 1985 edition.

Differential Forms And Applications

Author: Manfredo P. Do Carmo
Publisher: Springer Science & Business Media
ISBN: 3642579515
Size: 56.59 MB
Format: PDF, ePub, Docs
View: 4096
Download and Read
An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Tensors Differential Forms And Variational Principles

Author: David Lovelock
Publisher: Courier Corporation
ISBN: 048613198X
Size: 41.31 MB
Format: PDF, Kindle
View: 2029
Download and Read
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Differential Forms On Electromagnetic Networks

Author: N. V. Balasubramanian
Publisher: Elsevier
ISBN: 1483103242
Size: 68.39 MB
Format: PDF, ePub
View: 7078
Download and Read
Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the applications for the field network model; oscillatory behavior of electric machines; and the rotation tensor in machine differential structures. The text is recommended for engineering students who would like to be familiarized with electromagnetic networks and its related topics.

Advanced Calculus

Author: Harold M. Edwards
Publisher: Springer Science & Business Media
ISBN: 0817684123
Size: 50.30 MB
Format: PDF, Kindle
View: 4775
Download and Read
In a book written for mathematicians, teachers of mathematics, and highly motivated students, Harold Edwards has taken a bold and unusual approach to the presentation of advanced calculus. He begins with a lucid discussion of differential forms and quickly moves to the fundamental theorems of calculus and Stokes’ theorem. The result is genuine mathematics, both in spirit and content, and an exciting choice for an honors or graduate course or indeed for any mathematician in need of a refreshingly informal and flexible reintroduction to the subject. For all these potential readers, the author has made the approach work in the best tradition of creative mathematics. This affordable softcover reprint of the 1994 edition presents the diverse set of topics from which advanced calculus courses are created in beautiful unifying generalization. The author emphasizes the use of differential forms in linear algebra, implicit differentiation in higher dimensions using the calculus of differential forms, and the method of Lagrange multipliers in a general but easy-to-use formulation. There are copious exercises to help guide the reader in testing understanding. The chapters can be read in almost any order, including beginning with the final chapter that contains some of the more traditional topics of advanced calculus courses. In addition, it is ideal for a course on vector analysis from the differential forms point of view. The professional mathematician will find here a delightful example of mathematical literature; the student fortunate enough to have gone through this book will have a firm grasp of the nature of modern mathematics and a solid framework to continue to more advanced studies. The most important that it is fun—it is fun to read the exercises, it is fun to read the comments printed in the margins, it is fun simply to pick a random spot in the book and begin reading. This is the way mathematics should be presented, with an excitement and liveliness that show why we are interested in the subject. —The American Mathematical Monthly (First Review) An inviting, unusual, high-level introduction to vector calculus, based solidly on differential forms. Superb exposition: informal but sophisticated, down-to-earth but general, geometrically rigorous, entertaining but serious. Remarkable diverse applications, physical and mathematical. —The American Mathematical Monthly (1994) Based on the Second Edition

The Pullback Equation For Differential Forms

Author: Gyula Csató
Publisher: Springer Science & Business Media
ISBN: 0817683135
Size: 14.80 MB
Format: PDF, ePub, Mobi
View: 2423
Download and Read
An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.