Download finite element techniques for fluid flow in pdf or read finite element techniques for fluid flow in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get finite element techniques for fluid flow in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Finite Element Techniques For Fluid Flow

Author: J. J. Connor
Publisher: Newnes
ISBN: 1483161161
Size: 27.18 MB
Format: PDF
View: 4547
Download and Read
Finite Element Techniques for Fluid Flow describes the advances in the applications of finite element techniques to fluid mechanics. Topics covered range from weighted residual and variational methods to interpolation functions, inviscid fluids, and flow through porous media. The basic principles and governing equations of fluid mechanics as well as problems related to dispersion and shallow water circulation are also discussed. This text is comprised of nine chapters; the first of which explains some basic definitions and properties as well as the basic principles of weighted residual and variational methods. The reader is then introduced to the simple finite element concepts and models, and gradually to more complex applications. The chapters that follow focus on the governing equations of fluid flow, the solutions to potential type problems, and viscous flow problems in porous media. The solutions to more specialized problems are also presented. This book also considers how circulation problems can be tackled using finite elements, presents a solution to the mass transfer equation, and concludes with an explanation of how to solve general transient incompressible flows. This source will be of use to engineers, applied mathematicians, physicists, self-taught students, and research workers.

Finite Element Methods For Flow Problems

Author: Jean Donea
Publisher: John Wiley & Sons
ISBN: 9780471496663
Size: 41.83 MB
Format: PDF, ePub, Mobi
View: 1953
Download and Read
In recent years there have been significant developments in the development of stable and accurate finite element procedures for the numerical approximation of a wide range of fluid mechanics problems. Taking an engineering rather than a mathematical bias, this valuable reference resource details the fundamentals of stabilised finite element methods for the analysis of steady and time-dependent fluid dynamics problems. Organised into six chapters, this text combines theoretical aspects and practical applications and offers coverage of the latest research in several areas of computational fluid dynamics. * Coverage includes new and advanced topics unavailable elsewhere in book form * Collection in one volume of the widely dispersed literature reporting recent progress in this field * Addresses the key problems and offers modern, practical solutions Due to the balance between the concise explanation of the theory and the detailed description of modern practical applications, this text is suitable for a wide audience including academics, research centres and government agencies in aerospace, automotive and environmental engineering.

Discontinuous Finite Elements In Fluid Dynamics And Heat Transfer

Author: Ben Q. Li
Publisher: Springer Science & Business Media
ISBN: 1846282055
Size: 49.69 MB
Format: PDF
View: 4284
Download and Read
Over the past several years, significant advances have been made in developing the discontinuous Galerkin finite element method for applications in fluid flow and heat transfer. Certain unique features of the method have made it attractive as an alternative for other popular methods such as finite volume and finite elements in thermal fluids engineering analyses. This book is written as an introductory textbook on the discontinuous finite element method for senior undergraduate and graduate students in the area of thermal science and fluid dynamics. It also can be used as a reference book for researchers and engineers who intend to use the method for research in computational fluid dynamics and heat transfer. A good portion of this book has been used in a course for computational fluid dynamics and heat transfer for senior undergraduate and first year graduate students. It also has been used by some graduate students for self-study of the basics of discontinuous finite elements. This monograph assumes that readers have a basic understanding of thermodynamics, fluid mechanics and heat transfer and some background in numerical analysis. Knowledge of continuous finite elements is not necessary but will be helpful. The book covers the application of the method for the simulation of both macroscopic and micro/nanoscale fluid flow and heat transfer phenomena.

Finite Element Methods For Computational Fluid Dynamics

Author: Dmitri Kuzmin
Publisher: SIAM
ISBN: 1611973600
Size: 76.57 MB
Format: PDF, Kindle
View: 1931
Download and Read
This informal introduction to computational fluid dynamics and practical guide to numerical simulation of transport phenomena covers the derivation of the governing equations, construction of finite element approximations, and qualitative properties of numerical solutions, among other topics. To make the book accessible to readers with diverse interests and backgrounds, the authors begin at a basic level and advance to numerical tools for increasingly difficult flow problems, emphasizing practical implementation rather than mathematical theory.÷Finite Element Methods for Computational Fluid Dynamics: A Practical Guide÷explains the basics of the finite element method (FEM) in the context of simple model problems, illustrated by numerical examples. It comprehensively reviews stabilization techniques for convection-dominated transport problems, introducing the reader to streamline diffusion methods, Petrov?Galerkin approximations, Taylor?Galerkin schemes, flux-corrected transport algorithms, and other nonlinear high-resolution schemes, and covers Petrov?Galerkin stabilization, classical projection schemes, Schur complement solvers, and the implementation of the k-epsilon turbulence model in its presentation of the FEM for incompressible flow problem. The book also describes the open-source finite element library ELMER, which is recommended as a software development kit for advanced applications in an online component.÷

Finite Element Techniques In Groundwater Flow Studies

Author: I. Kazda
Publisher: Elsevier
ISBN: 0444598324
Size: 75.25 MB
Format: PDF, ePub, Docs
View: 832
Download and Read
The finite element method (FEM) is one of those modern numerical methods whose rise and development was incited by the rapid development of computers. This method has found applications in all the technical disciplines as well as in the natural sciences. One of the most effective applications of the finite element method is its use for the solution of groundwater flow problems encountered in the design and maintenance of hydraulic structures and tailing dams, in soil mechanics, hydrology, hydrogeology and engineering geology. The stimuli to write this book came from the results obtained in the solution of practical problems connected both with the construction and maintenance of fill-type dams and tailing dams and the utilization of groundwater in Czechoslovakia, and on the other hand from the experience gained in teaching hydraulic structures theory at the Faculty of Civil Engineering of the Technical University of Prague. All the experience so far obtained shows markedly the advantages of the finite element method and the great possibilities of its further development as well as its considerable demands on the algorithmization, programming and use of computer possibilities. The reader will find an explanation of the fundamentals of the finite element method directed mainly toward isoparametric elements having an exceptional adaptability and numerical reliability. The finite element method application to groundwater flow concerns mainly two-dimensional problems, which occur most frequently in practice. Considerable attention is given to non-linear and non-stationary problems, which are most important in application. A computer program (based on the eight-noded isoparametric elements) is included and fully documented. The book will be useful to civil engineers, hydrogeologists and engineering geologists who need the finite element method as a solution tool for the complex problems encountered in engineering practice.

Computational Fluid Dynamics

Author: T. J. Chung
Publisher: Cambridge University Press
ISBN: 1139493299
Size: 28.21 MB
Format: PDF, ePub, Docs
View: 1371
Download and Read
The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.

Hydrothermal Analysis In Engineering Using Control Volume Finite Element Method

Author: Mohsen Sheikholeslami
Publisher: Academic Press
ISBN: 0081003617
Size: 72.91 MB
Format: PDF
View: 3931
Download and Read
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid Discusses the governing equations of MHD and FHD Provides a number of extensive examples throughout the book Bonus appendix with sample computer code

Finite Elements And Fast Iterative Solvers

Author: Howard C. Elman
Publisher: Oxford University Press (UK)
ISBN: 0199678804
Size: 50.24 MB
Format: PDF, ePub, Docs
View: 6909
Download and Read
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory" provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.

Introduction To Finite Element Boundary Element And Meshless Methods

Author: Darrell W. Pepper
Publisher: Amer Society of Mechanical
ISBN: 9780791860335
Size: 25.22 MB
Format: PDF, Mobi
View: 4876
Download and Read
When students once master the concepts of the finite element method (and meshing), it's not long before they begin to look at other numerical techniques and applications, especially the boundary element and meshless methods (since a mesh is not required). The expert authors of this book provide a simple explanation of these three powerful numerical schemes and show how they all fall under the umbrella of the more universal method of weighted residuals. The book is structured in four sections. The first introductory section provides the method of weighted residuals development of finite differences, finite volume, finite element, boundary element, and meshless methods along with 1D examples of each method. The following three sections of the book present a more detailed development of the finite element method, then progress through the boundary element method, and end with meshless methods. Each section serves as a stand-alone description, but it is apparent how each conveniently leads to the other techniques. It is recommended that the reader begin with the finite element method, as this serves as the primary basis for defining the method of weighted residuals. Computer files in both MathCad and MATLAB are available from the website, along with example data files.

Computational Methods In Subsurface Flow

Author: Peter S. Huyakorn
Publisher: Academic Press
ISBN: 0323137970
Size: 54.70 MB
Format: PDF, ePub, Mobi
View: 3474
Download and Read
Computational Methods in Subsurface Flow explores the application of all of the commonly encountered computational methods to subsurface problems. Among the problems considered in this book are groundwater flow and contaminant transport; moisture movement in variably saturated soils; land subsidence and similar flow and deformation processes in soil and rock mechanics; and oil and geothermal reservoir engineering. This book is organized into 10 chapters and begins with an introduction to partial differential and various solution approaches used in subsurface flow. The discussion then shifts to the fundamental theory of the finite element method, with emphasis on the Galerkin finite element method and how it can be used to solve a wide range of subsurface problems. The subjects treated range from simple problems of saturated groundwater flow to more complex ones of moisture movement and multiphase flow in petroleum reservoirs. The chapters that follow focus on fluid flow and mechanical deformation of conventional and fractured porous media; point and subdomain collocation techniques and the boundary element technique; and the applications of finite difference techniques to single- and multiphase flow and solute transport. The final chapter is devoted to other alternative numerical methods that are based on combinations of the standard finite difference approach and classical mathematics. This book is intended for senior undergraduate and graduate students in geoscience and engineering, as well as for professional groundwater hydrologists, engineers, and research scientists who want to solve or model subsurface problems using numerical techniques.