Download flexible manipulators modeling analysis and optimum design intelligent systems in pdf or read flexible manipulators modeling analysis and optimum design intelligent systems in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get flexible manipulators modeling analysis and optimum design intelligent systems in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Flexible Manipulators

Author: Yanqing Gao
Publisher: Academic Press
ISBN: 0123973236
Size: 57.76 MB
Format: PDF, ePub
View: 4661
Download and Read
The Intelligent Systems Series comprises titles that present state-of-the-art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Flexible manipulators play a critical role in applications in a diverse range of fields, such as construction automation, environmental applications, and space engineering. Due to the complexity of the link deformation and dynamics, the research effort on accurate modeling and high performance control of flexible manipulators has increased dramatically in recent years. This book presents analysis, data and insights that will of particular use for researchers and engineers working on the optimization and control of robotic manipulators and automation systems. Government and industry groups have specifically stressed the importance of innovation in robotics, manufacturing automation, and control systems for maintaining innovation and high-value-added manufacturing Discusses the latest research on the quantitative effects of size, shape, mass distribution, tip load, on the dynamics and operational performance of flexible manipulators Presents unique analyses critical to the effective modeling and optimization of manipulators: hard to find data unavailable elsewhere

Advanced Studies Of Flexible Robotic Manipulators

Author: Yanqing Gao
Publisher: World Scientific
ISBN: 9789812796721
Size: 34.47 MB
Format: PDF, ePub, Mobi
View: 4163
Download and Read
Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators. Sample Chapter(s). Chapter 1: Flexible-link Manipulators: Modeling, Nonlinear Control and Observer (235 KB). Contents: Flexible-Link Manipulators: Modeling, Nonlinear Control and Observer (M A Arteaga & B Siciliano); Energy-Based Control of Flexible Link Robots (S S Ge); Trajectory Planning and Compliant Control for Two Manipulators to Deform Flexible Materials (O Al-Jarrah et al.); Force Control of Flexible Manipulators (F Matsuno); Experimental Study on the Control of Flexible Link Robots (D Wang); Sensor Output Feedback Control of Flexible Robot Arms (Z-H Luo); On GA Based Robust Control of Flexible Manipulators (Z-Q Xiao & L-L Cui); Analysis of Poles and Zeros for Tapered Link Designs (D L Girvin & W J Book); Optimum Shape Design of Flexible Manipulators with Tip Loads (J L Russell & Y-Q Gao); Mechatronic Design of Flexible Manipulators (P-X Zhou & Z-Q Xiao); A Comprehensive Study of Dynamic Behaviors of Flexible Robotic Links: Modeling and Analysis (Y-Q Gao & F-Y Wang). Readership: Researchers, lecturers and graduate students in robotics & automated systems, electrical & electronic engineering, and industrial engineering

Vibration Damping Control And Design

Author: Clarence W. de Silva
Publisher: CRC Press
ISBN: 9781420053227
Size: 52.70 MB
Format: PDF, Kindle
View: 5432
Download and Read
Reducing and controlling the level of vibration in a mechanical system leads to an improved work environment and product quality, reduced noise, more economical operation, and longer equipment life. Adequate design is essential for reducing vibrations, while damping and control methods help further reduce and manipulate vibrations when design strategies reach their limits. There are also useful types of vibration, which may require enhancement or control. Vibration Damping, Control, and Design balances theoretical and application-oriented coverage to enable optimal vibration and noise suppression and control in nearly any system. Drawn from the immensely popular Vibration and Shock Handbook, each expertly crafted chapter of this book includes convenient summary windows, tables, graphs, and lists to provide ready access to the important concepts and results. Working systematically from general principles to specific applications, coverage spans from theory and experimental techniques in vibration damping to isolation, passive control, active control, and structural dynamic modification. The book also discusses specific issues in designing for and controlling vibrations and noise such as regenerative chatter in machine tools, fluid-induced vibration, hearing and psychological effects, instrumentation for monitoring, and statistical energy analysis. This carefully edited work strikes a balance between practical considerations, design issues, and experimental techniques. Complemented by design examples and case studies, Vibration Damping, Control, and Design builds a deep understanding of the concepts and demonstrates how to apply these principles to real systems.

Vibration And Shock Handbook

Author: Clarence W. de Silva
Publisher: CRC Press
ISBN: 9781420039894
Size: 24.49 MB
Format: PDF, ePub, Mobi
View: 7364
Download and Read
Every so often, a reference book appears that stands apart from all others, destined to become the definitive work in its field. The Vibration and Shock Handbook is just such a reference. From its ambitious scope to its impressive list of contributors, this handbook delivers all of the techniques, tools, instrumentation, and data needed to model, analyze, monitor, modify, and control vibration, shock, noise, and acoustics. Providing convenient, thorough, up-to-date, and authoritative coverage, the editor summarizes important and complex concepts and results into “snapshot” windows to make quick access to this critical information even easier. The Handbook’s nine sections encompass: fundamentals and analytical techniques; computer techniques, tools, and signal analysis; shock and vibration methodologies; instrumentation and testing; vibration suppression, damping, and control; monitoring and diagnosis; seismic vibration and related regulatory issues; system design, application, and control implementation; and acoustics and noise suppression. The book also features an extensive glossary and convenient cross-referencing, plus references at the end of each chapter. Brimming with illustrations, equations, examples, and case studies, the Vibration and Shock Handbook is the most extensive, practical, and comprehensive reference in the field. It is a must-have for anyone, beginner or expert, who is serious about investigating and controlling vibration and acoustics.

Flexible Robotics

Author: Mathieu Grossard
Publisher: John Wiley & Sons
ISBN: 1118572122
Size: 35.79 MB
Format: PDF, Kindle
View: 5444
Download and Read
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.

Proceedings Of 2017 Chinese Intelligent Systems Conference

Author: Yingmin Jia
Publisher: Springer
ISBN: 9811064962
Size: 14.24 MB
Format: PDF, ePub, Docs
View: 4806
Download and Read
This book presents selected research papers from CISC’17, held in MudanJiang, China. The topics covered include Multi-agent system, Evolutionary Computation, Artificial Intelligence, Complex systems, Computation intelligence and soft computing, Intelligent control, Advanced control technology, Robotics and applications, Intelligent information processing, Iterative learning control, Machine Learning, and etc. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

Introduction To Robotics

Author: John J. Craig
Publisher: Prentice Hall
ISBN: 9780133489798
Size: 68.51 MB
Format: PDF, ePub
View: 6813
Download and Read
For senior-year undergraduate and first-year graduate courses in robotics. An intuitive introduction to robotic theory and application Since its original publication in 1986, Craig's Introduction to Robotics: Mechanics and Control has been the leading textbook for teaching robotics at the university level. Blending traditional mechanical engineering material with computer science and control theoretical concepts, the text covers a range of topics, including rigid-body transformations, forward and inverse positional kinematics, velocities and Jacobians of linkages, dynamics, linear and non-linear control, force control methodologies, mechanical design aspects, and robotic programming. The 4th Edition features a balance of application and theory, introducing the science and engineering of mechanical manipulation--establishing and building on foundational understanding of mechanics, control theory, and computer science. With an emphasis on computational aspects of problems, the text aims to present material in a simple, intuitive way.