Download goodness of fit statistics for discrete multivariate data springer series in statistics in pdf or read goodness of fit statistics for discrete multivariate data springer series in statistics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get goodness of fit statistics for discrete multivariate data springer series in statistics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Goodness Of Fit Statistics For Discrete Multivariate Data

Author: Timothy R.C. Read
Publisher: Springer Science & Business Media
ISBN: 1461245788
Size: 13.79 MB
Format: PDF, Kindle
View: 6996
Download and Read
The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties.

Handbook Of Computational Statistics

Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 3642215513
Size: 67.48 MB
Format: PDF, Docs
View: 1187
Download and Read
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

Multivariate Statistical Modelling Based On Generalized Linear Models

Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 1489900101
Size: 31.84 MB
Format: PDF, Docs
View: 507
Download and Read
Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Asymptotic Theory Of Statistical Inference For Time Series

Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146121162X
Size: 20.75 MB
Format: PDF, Kindle
View: 5783
Download and Read
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Models For Discrete Longitudinal Data

Author: Geert Molenberghs
Publisher: Springer Science & Business Media
ISBN: 9780387251448
Size: 41.43 MB
Format: PDF, Kindle
View: 5140
Download and Read
This book provides a comprehensive treatment on modeling approaches for non-Gaussian repeated measures, possibly subject to incompleteness. The authors begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives, including generalized estimating equations and pseudo-likelihood methods. They then briefly introduce conditional models and move on to the random-effects family, encompassing the beta-binomial model, the probit model and, in particular the generalized linear mixed model. Several frequently used procedures for model fitting are discussed and differences between marginal models and random-effects models are given attention The authors consider a variety of extensions, such as models for multivariate longitudinal measurements, random-effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data. The authors critique frequently used methods and propose flexible and broadly valid methods instead, and conclude with key concepts of sensitivity analysis. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The text is organized so the reader can skip the software-oriented chapters and sections without breaking the logical flow. Geert Molenberghs is Professor of Biostatistics at the Universiteit Hasselt in Belgium and has published methodological work on surrogate markers in clinical trials, categorical data, longitudinal data analysis, and the analysis of non-response in clinical and epidemiological studies. He served as Joint Editor for Applied Statistics (2001–2004) and as Associate Editor for several journals, including Biometrics and Biostatistics. He was President of the International Biometric Society (2004–2005). He was elected Fellow of the American Statistical Association and received the Guy Medal in Bronze from the Royal Statistical Society. Geert Verbeke is Professor of Biostatistics at the Biostatistical Centre of the Katholieke Universiteit Leuven in Belgium. He has published a number of methodological articles on various aspects of models for longitudinal data analyses, with particular emphasis on mixed models. Geert Verbeke is Past President of the Belgian Region of the International Biometric Society, International Program Chair for the International Biometric Conference in Montreal (2006), and Joint Editor of the Journal of the Royal Statistical Society, Series A (2005–2008). He has served as Associate Editor for several journals including Biometrics and Applied Statistics. The authors also wrote a monograph on linear mixed models for longitudinal data (Springer, 2000) and received the American Statistical Association's Excellence in Continuing Education Award, based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Goodness Of Fit Tests And Model Validity

Author: C. Huber-Carol
Publisher: Springer Science & Business Media
ISBN: 1461201039
Size: 73.43 MB
Format: PDF, Docs
View: 2166
Download and Read
The 37 expository articles in this volume provide broad coverage of important topics relating to the theory, methods, and applications of goodness-of-fit tests and model validity. The book is divided into eight parts, each of which presents topics written by expert researchers in their areas. Key features include: * state-of-the-art exposition of modern model validity methods, graphical techniques, and computer-intensive methods * systematic presentation with sufficient history and coverage of the fundamentals of the subject * exposure to recent research and a variety of open problems * many interesting real life examples for practitioners * extensive bibliography, with special emphasis on recent literature * subject index This comprehensive reference work will serve the statistical and applied mathematics communities as well as practitioners in the field.

Copulae In Mathematical And Quantitative Finance

Author: Piotr Jaworski
Publisher: Springer Science & Business Media
ISBN: 3642354076
Size: 29.76 MB
Format: PDF
View: 1718
Download and Read
Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 1950s, copulas have gained considerable popularity in several fields of applied mathematics, especially finance and insurance. Today, copulas represent a well-recognized tool for market and credit models, aggregation of risks, and portfolio selection. Historically, the Gaussian copula model has been one of the most common models in credit risk. However, the recent financial crisis has underlined its limitations and drawbacks. In fact, despite their simplicity, Gaussian copula models severely underestimate the risk of the occurrence of joint extreme events. Recent theoretical investigations have put new tools for detecting and estimating dependence and risk (like tail dependence, time-varying models, etc) in the spotlight. All such investigations need to be further developed and promoted, a goal this book pursues. The book includes surveys that provide an up-to-date account of essential aspects of copula models in quantitative finance, as well as the extended versions of talks selected from papers presented at the workshop in Cracow.

Permutation Methods

Author: Paul W. Mielke
Publisher: Springer Science & Business Media
ISBN: 0387698132
Size: 55.79 MB
Format: PDF, ePub, Docs
View: 1295
Download and Read
This is the second edition of the comprehensive treatment of statistical inference using permutation techniques. It makes available to practitioners a variety of useful and powerful data analytic tools that rely on very few distributional assumptions. Although many of these procedures have appeared in journal articles, they are not readily available to practitioners. This new and updated edition places increased emphasis on the use of alternative permutation statistical tests based on metric Euclidean distance functions that have excellent robustness characteristics. These alternative permutation techniques provide many powerful multivariate tests including multivariate multiple regression analyses.