Download handbook of optical sensing of glucose in biological fluids and tissues series in medical physics and biomedical engineering in pdf or read handbook of optical sensing of glucose in biological fluids and tissues series in medical physics and biomedical engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get handbook of optical sensing of glucose in biological fluids and tissues series in medical physics and biomedical engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Handbook Of Optical Sensing Of Glucose In Biological Fluids And Tissues

Author: Valery V. Tuchin
Publisher: CRC Press
ISBN: 9781584889755
Size: 67.53 MB
Format: PDF
View: 4790
Download and Read
Although noninvasive, continuous monitoring of glucose concentration in blood and tissues is one of the most challenging areas in medicine, a wide range of optical techniques has recently been designed to help develop robust noninvasive methods for glucose sensing. For the first time in book form, the Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues analyzes trends in noninvasive optical glucose sensing and discusses its impact on tissue optical properties. This handbook presents methods that improve the accuracy in glucose prediction based on infrared absorption spectroscopy, recent studies on the influence of acute hyperglycemia on cerebral blood flow, and the correlation between diabetes and the thermo-optical response of human skin. It examines skin glucose monitoring by near-infrared spectroscopy (NIR), fluorescence-based glucose biosensors, and a photonic crystal contact lens sensor. The contributors also explore problems of polarimetric glucose sensing in transparent and turbid tissues as well as offer a high-resolution optical technique for noninvasive, continuous, and accurate blood glucose monitoring and glucose diffusion measurement. Written by world-renowned experts in biomedical optics and biophotonics, this book gives a complete, state-of-the-art treatise on the design and applications of noninvasive optical methods and instruments for glucose sensing.

Physiology Biophysics And Biomedical Engineering

Author: Andrew W Wood
Publisher: Taylor & Francis
ISBN: 1466552794
Size: 27.29 MB
Format: PDF, Docs
View: 6215
Download and Read
Physiology, Biophysics and Biomedical Engineering provides a multidisciplinary understanding of biological phenomena and the instrumentation for monitoring these phenomena. It covers the physical phenomena of electricity, pressure, and flow along with the adaptation of the physics of the phenomena to the special conditions and constraints of biological systems. While the text focuses on human biological systems, some of the principles also apply to plants, bacteria, and other animals. The first section of the book presents a general introduction to physiological systems and describes specialized methods used to record electrical events from biological tissue. The next part examines molecules involved in cell transport and signaling as well as the proteins relevant in cells’ ability to contract and generate tension. The text goes on to cover the properties of the heart, blood, and circulation and the monitoring of cardiac and circulatory function. It then discusses the importance of the interrelationship of pressures and flows in organ systems, such as the lungs and kidneys, and details the organization and function of the nervous system. After focusing on the systems used to monitor signals, the book explores modeling, biomechanics, and emerging technologies, including the progressive miniaturization of sensors and actuators in biomedical engineering. Developed from the authors’ courses in medical biophysics and biomedical instrumentation, this book shows how biophysics and biomedical engineering have advanced modern medicine. It brings together the physical principles underlying human physiological processes and the physical methods used to monitor these processes. Requiring only basic mathematical knowledge, the text supplements mathematical formulae with qualitative explanations and illustrations to encourage an intuitive grasp on the processes discussed.

Nuclear Medicine Physics

Author: Joao Jose De Lima
Publisher: CRC Press
ISBN: 9781584887966
Size: 16.27 MB
Format: PDF, ePub
View: 7243
Download and Read
Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it describes the use of radiopharmaceuticals in molecular imaging, clinical, and research studies. The text then covers modern radiation detectors and measuring methods, including those used in nuclear imaging, as well as numerous imaging methodologies and models, such as two- and three-dimensional image reconstruction algorithms, data processing sequences, new nuclear oncology techniques, and physiological models of the central nervous system. It also introduces biological systems theory, nuclear medicine methods as systems theory procedures, and aspects of kinetic modeling. The final chapter explores dosimetry and the biological effects of ionizing radiation. With many new developments occurring in nuclear medicine, it is important to understand how advanced approaches are being used in emerging applications. Offering invaluable insight into this growth, Nuclear Medicine Physics provides in-depth descriptions of new radiolabeled biological drugs, new cell labeling techniques, new technical concepts in radiation detection, improvements in instrumentation, and much more.

Webb S Physics Of Medical Imaging Second Edition

Author: M A Flower
Publisher: Taylor & Francis
ISBN: 146656895X
Size: 29.64 MB
Format: PDF
View: 7196
Download and Read
Since the publication of the best-selling, highly acclaimed first edition, the technology and clinical applications of medical imaging have changed significantly. Gathering these developments into one volume, Webb’s Physics of Medical Imaging, Second Edition presents a thorough update of the basic physics, modern technology and many examples of clinical application across all the modalities of medical imaging. New to the Second Edition Extensive updates to all original chapters Coverage of state-of-the-art detector technology and computer processing used in medical imaging 11 new contributors in addition to the original team of authors Two new chapters on medical image processing and multimodality imaging More than 50 percent new examples and over 80 percent new figures Glossary of abbreviations, color insert and contents lists at the beginning of each chapter Keeping the material accessible to graduate students, this well-illustrated book reviews the basic physics underpinning imaging in medicine. It covers the major techniques of x-radiology, computerised tomography, nuclear medicine, ultrasound and magnetic resonance imaging, in addition to infrared, electrical impedance and optical imaging. The text also describes the mathematics of medical imaging, image processing, image perception, computational requirements and multimodality imaging.

Tissue Optics

Author: Valeriĭ Viktorovich Tuchin
Publisher: CCH
ISBN: 9780819464330
Size: 18.64 MB
Format: PDF, ePub, Mobi
View: 5137
Download and Read
This second edition covers the intensive growth in tissue optics--in particular, the field of tissue diagnostics and imaging--that has occurred since 2000. As in the original edition, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. The extensive new material includes results on tissue optical property measurements, including polarized light interaction with turbid tissues; an overview of new polarization imaging and spectroscopy techniques, optical computed tomography (OCT) developments and applications; updates on controlling tissue optical properties, and the optothermal and optoacoustic interaction of light with tissues; and descriptions of fluorescence, nonlinear spectroscopies, and inelastic light scattering.

Tissue Optics

Author: Valery Tuchin
ISBN: 9781628415162
Size: 45.58 MB
Format: PDF, ePub, Docs
View: 829
Download and Read
This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.

Practical Nuclear Medicine

Author: Peter F. Sharp
Publisher: Springer Science & Business Media
ISBN: 1846280184
Size: 67.93 MB
Format: PDF, ePub
View: 6808
Download and Read
This book is an essential guide for all practitioners. The emphasis throughout is on the practice of nuclear medicine. Primarily aimed at the radiologist, physician, physicist or technologist starting in nuclear medicine, it will also appeal to more experienced practitioners who are keen to stay up-to-date. The practical approach with tables as "recipes" for acquisition protocols means it is essential for any departmental shelf. 3rd edition expanded - now covering areas of development in nuclear medicine, such as PET and other methods of tumour imaging, data processing. All illustrations are up-to-date to reflect current standards of image quality.

Microfluidic Technologies For Human Health

Author: Ali Khademhosseini
Publisher: World Scientific
ISBN: 9814405515
Size: 47.41 MB
Format: PDF
View: 4398
Download and Read
Ch. 1. A microscale bioinspired cochlear-like sensor / Robert D. White, Robert Littrell, and Karl Grosh -- ch. 2. Systematic evaluation of the efficiencies of proteins and chemicals in pharmaceutical applications / Morgan Hamon and Jong Wook Hong -- ch. 3. Microfluidic glucose sensors / Jithesh V. Veetil ... [et al.] -- ch. 4. Applications of microfabrication and microfluidic techniques in mesenchymal stem cell research / Abhijit Majumder ... [et al.] -- ch. 5. Patient-specific modeling of low-density lipoprotein transport in coronary arteries / Ufuk Olgac -- ch. 6. Point-of-care microdevices for global health diagnostics of infectious diseases / Sau Yin Chin ... [et al.] -- ch. 7. Integrated microfluidic sample preparation for chip-based molecular diagnostics / Jane Y. Zhang ... [et al.] -- ch. 8. Microfluidic devices for cellular proteomic studies / Yihong Zhan and Chang Lu -- ch. 9. Microfluidics for neuroscience: novel tools and future implications / Vivian M. Hernandez and P. Hande Ozdinler -- ch. 10. Microfluidics: on-chip platforms as in vitro disease models / Shan Gao, Erkin Seker, and Martin L. Yarmush -- ch. 11. Application of microfluidics in stem cell and tissue engineering / Sasha H. Bakhru, Christopher Highley, and Stefan Zappe -- ch. 12. Microfluidic "on-the-fly" fabrication of microstructures for biomedical applications / Edward Kang, Sau Fung Wong, and Sang-Hoon Lee -- ch. 13. Microfluidics as a promising tool toward distributed viral detection / Elodie Sollier and Dino Di Carlo -- ch. 14. Electrophoresis and dielectrophoresis for lab-on-a-chip (LOC) analyses / Yagmur Demircan, Gurkan Yilmaz, and Haluk Kulah -- ch. 15. Ultrasonic embossing of carbon nanotubes for the fabrication of polymer microfluidic chips for DNA sample purification / Puttachat Khuntontong, Min Gong, and Zhiping Wang -- ch. 16. Ferrofluidics / A. Rezzan Kose and Hur Koser -- ch. 17. Antibody-based blood bioparticle capture and separation using microfluidics for global health / ZhengYuan Luo ... [et al.] -- ch. 18. Applications of quantum dots for fluorescence imaging in biomedical research / ShuQi Wang ... [et al.]

Medical Image Processing

Author: Geoff Dougherty
Publisher: Springer Science & Business Media
ISBN: 9781441997791
Size: 31.73 MB
Format: PDF, ePub
View: 3675
Download and Read
The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.