Download hidden markov models for time series an introduction using r second edition chapman hall crc monographs on statistics applied probability in pdf or read hidden markov models for time series an introduction using r second edition chapman hall crc monographs on statistics applied probability in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get hidden markov models for time series an introduction using r second edition chapman hall crc monographs on statistics applied probability in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Hidden Markov Models For Time Series

Author: Walter Zucchini
Publisher: CRC Press
ISBN: 1482253844
Size: 16.36 MB
Format: PDF, Kindle
View: 703
Download and Read
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture–recapture data

Nonparametric Models For Longitudinal Data

Author: Colin O. Wu
Publisher: CRC Press
ISBN: 0429939086
Size: 74.56 MB
Format: PDF, ePub, Mobi
View: 7328
Download and Read
Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precision medicine. It also provides flexible tools to describe the temporal trends, covariate effects and correlation structures of repeated measurements in longitudinal data. This book is intended for graduate students in statistics, data scientists and statisticians in biomedical sciences and public health. As experts in this area, the authors present extensive materials that are balanced between theoretical and practical topics. The statistical applications in real-life examples lead into meaningful interpretations and inferences. Features: Provides an overview of parametric and semiparametric methods Shows smoothing methods for unstructured nonparametric models Covers structured nonparametric models with time-varying coefficients Discusses nonparametric shared-parameter and mixed-effects models Presents nonparametric models for conditional distributions and functionals Illustrates implementations using R software packages Includes datasets and code in the authors’ website Contains asymptotic results and theoretical derivations Both authors are mathematical statisticians at the National Institutes of Health (NIH) and have published extensively in statistical and biomedical journals. Colin O. Wu earned his Ph.D. in statistics from the University of California, Berkeley (1990), and is also Adjunct Professor at the Georgetown University School of Medicine. He served as Associate Editor for Biometrics and Statistics in Medicine, and reviewer for National Science Foundation, NIH, and the U.S. Department of Veterans Affairs. Xin Tian earned her Ph.D. in statistics from Rutgers, the State University of New Jersey (2003). She has served on various NIH committees and collaborated extensively with clinical researchers.

Probabilistic Foundations Of Statistical Network Analysis

Author: Harry Crane
Publisher: CRC Press
ISBN: 1351807331
Size: 16.34 MB
Format: PDF, ePub, Mobi
View: 426
Download and Read
Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. ? ? ? ? ? ?

Multistate Models For The Analysis Of Life History Data

Author: Richard J Cook
Publisher: CRC Press
ISBN: 1498715613
Size: 17.86 MB
Format: PDF, ePub, Docs
View: 6866
Download and Read
Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. Features Discusses a wide range of applications of multistate models Presents methods for both continuously and intermittently observed life history processes Gives a thorough discussion of conditionally independent censoring and observation processes Discusses models with random effects and joint models for two or more multistate processes Discusses and illustrates software for multistate analysis that is available in R Target audience includes those engaged in research and applications involving multistate models Richard Cook is Canada Research Chair in Statistical Methods for Health Research at the University of Waterloo. He has received the Gold Medal of the Statistical Society of Canada and is a Fellow of the American Statistical Association. He collaborates and consults widely on health research and has given many short courses. He and Dr. Lawless previously coauthored the influential book, The Statistical Analysis of Recurrent Events (Springer, 2007). Jerald Lawless is Distinguished Professor Emeritus at the University of Waterloo. He is a Fellow of the Royal Society of Canada, a Gold Medal recipient of the Statistical Society of Canada and Fellow of the American Statistical Association. He is a past editor of Technometrics and has collaborated and consulted in numerous areas. He has presented many short courses, with Dr. Cook and individually. "The authors of the book are internationally renowned experts in the field of multi-state modeling and have written an extremely clear and comprehensive book on the topic that covers many different aspects, from the fundamental theory to the practical side of analyzing data and interpreting results. The examples are well chosen to represent the most common types of multi-state processes that public health researchers could encounter. The inclusion of software code to illustrate how the models can be fit and interpreted is especially helpful to readers." (Mimi Kim, Albert Einstein College of Medicine)

Mixed Effects Models For The Population Approach

Author: Marc Lavielle
Publisher: CRC Press
ISBN: 1482226502
Size: 78.85 MB
Format: PDF, ePub, Mobi
View: 3611
Download and Read
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects Models Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time. Easy-to-Use Techniques and Tools for Real-World Data Modeling The book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of the EM algorithm (SAEM), for modeling these diverse data types. The book also covers other essential methods, including Markov chain Monte Carlo (MCMC) and importance sampling techniques. The author uses publicly available software tools to illustrate modeling tasks. Methods are implemented in Monolix, and models are visually explored using Mlxplore and simulated using Simulx. Careful Balance of Mathematical Representation and Practical Implementation This book takes readers through the whole modeling process, from defining/creating a parametric model to performing tasks on the model using various mathematical methods. Statisticians and mathematicians will appreciate the rigorous representation of the models and theoretical properties of the methods while modelers will welcome the practical capabilities of the tools. The book is also useful for training and teaching in any field where population modeling occurs.

Diagnostic Checks In Time Series

Author: Wai Keung Li
Publisher: CRC Press
ISBN: 9780203485606
Size: 43.77 MB
Format: PDF, Mobi
View: 2958
Download and Read
Diagnostic checking is an important step in the modeling process. But while the literature on diagnostic checks is quite extensive and many texts on time series modeling are available, it still remains difficult to find a book that adequately covers methods for performing diagnostic checks. Diagnostic Checks in Time Series helps to fill that gap. Author Wai Keung Li--one of the world's top authorities in time series modeling--concentrates on diagnostic checks for stationary time series and covers a range of different linear and nonlinear models, from various ARMA, threshold type, and bilinear models to conditional non-Gaussian and autoregressive heteroscedasticity (ARCH) models. Because of its broad applicability, the portmanteau goodness-of-fit test receives particular attention, as does the score test. Unlike most treatments, the author's approach is a practical one, and he looks at each topic through the eyes of a model builder rather than a mathematical statistician. This book brings together the widely scattered literature on the subject, and with clear explanations and focus on applications, it guides readers through the final stages of their modeling efforts. With Diagnostic Checks in Time Series, you will understand the relative merits of the models discussed, know how to estimate these models, and often find ways to improve a model.