Download hydraulics of spillways and energy dissipators civil and environmental engineering in pdf or read hydraulics of spillways and energy dissipators civil and environmental engineering in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get hydraulics of spillways and energy dissipators civil and environmental engineering in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Hydraulics Of Spillways And Energy Dissipators

Author: Rajnikant M. Khatsuria
Publisher: CRC Press
ISBN: 9780203996980
Size: 67.92 MB
Format: PDF, Mobi
View: 7244
Download and Read
An unsurpassed treatise on the state-of-the-science in the research and design of spillways and energy dissipators, Hydraulics of Spillways and Energy Dissipators compiles a vast amount of information and advancements from recent conferences and congresses devoted to the subject. It highlights developments in theory and practice and emphasizing topics related to scale effect, dynamic flow measurement, and the analysis and interpretation of model results. Consolidates and compares the available information on various design approaches, procedures, and structure types to benefit practicing engineers. Reflecting the author's nearly four decades of experience in the field, this handbook Provides four broad sections on spillway design, flood- estimation and selection, various types of spillways and energy dissipators, and topics of special interest Offers valuable case studies and illustrative examples to effectively highlight key topics in the text Includes chapters on crucial design elements such as cavitation, air entrainment, and aerators Contains extensive discussions of spillway construction stages, dual purpose spillways, overtopping protection of earth dams used as spillways, unlined spillways, fuse plugs and fuse gate spillways, air entrainment and forced aeration, and protection against detrimental forces such as cavitation, uplift, and scour About the Author: RAJNIKANT M. KHATSURIA served as Additional Director, Central Water and Power Research Station, Pune, India, until his retirement in 2001. He joined the Central Water and Power Research Station in 1963 and was engaged in the research and design of hydraulic structures, based on hydraulic model studies. His special interests include spillways, energy dissipators, control and conveyance structures, and hydropower structures. He has completed nearly 150 projects pertaining to the above disciplines and has authored a number of technical papers and professional reports. He contributed towards the field standardization of overflow, non-overflow, and hydropower structures. He also served as the Senior Expert for WAPCOS (India) Ltd. (1989-90) for the planning and commissioning of the HLAB (hydraulics laboratory) at Al Taji, Baghdad, Iraq. He received the B.E. (1963) degree from Gujarat University, India, the M.E. (1975) degree from the University of Pune, India, and the M.S. (1981) degree from the University of Iowa, Iowa City.

Hydraulics Of Stepped Chutes And Spillways

Author: Hubert Chanson
Publisher: CRC Press
ISBN: 9789058093523
Size: 60.97 MB
Format: PDF
View: 1831
Download and Read
Stepped channel design has been in use for more than 3,500 years. Recent advances in technology have triggered a regained interest in stepped design, although much expertise has been lost in the last 80 years. The steps significantly increase the rate of energy dissipation taking place along the chute and reduce the size of the required downstream energy dissipation basin. Stepped cascades are also used in water treatment plants to enhance the air-water transfer of atmospheric gases (e.g. oxygen, nitrogen) and of volatile organic components (VOC). Results from more than forty-five laboratory studies and four prototype investigations were re-analysed and compared. The book provides a new understanding of stepped channel hydraulics, and is aimed both at researchers and professionals.

Hydraulics In Civil And Environmental Engineering Fifth Edition

Author: Andrew Chadwick
Publisher: CRC Press
ISBN: 0415672457
Size: 47.22 MB
Format: PDF, ePub, Mobi
View: 7207
Download and Read
Now in its fifth edition, Hydraulics in Civil and Environmental Engineering combines thorough coverage of the basic principles of civil engineering hydraulics with wide-ranging treatment of practical, real-world applications. This classic text is carefully structured into two parts to address principles before moving on to more advanced topics. The first part focuses on fundamentals, including hydrostatics, hydrodynamics, pipe and open channel flow, wave theory, physical modeling, hydrology, and sediment transport. The second part illustrates the engineering applications of these fundamental principles to pipeline system design; hydraulic structures; and river, canal, and coastal engineering—including up-to-date environmental implications. A chapter on computational hydraulics demonstrates the application of computational simulation techniques to modern design in a variety of contexts. What’s New in This Edition Substantive revisions of the chapters on hydraulic machines, flood hydrology, and computational modeling New material added to the chapters on hydrostatics, principles of fluid flow, behavior of real fluids, open channel flow, pressure surge in pipelines, wave theory, sediment transport, river engineering, and coastal engineering The latest recommendations on climate change predictions, impacts, and adaptation measures Updated references Hydraulics in Civil and Environmental Engineering, Fifth Edition is an essential resource for students and practitioners of civil, environmental, and public health engineering and associated disciplines. It is comprehensive, fully illustrated, and contains many worked examples. Spreadsheets and useful links to other web pages are available on an accompanying website, and a solutions manual is available to lecturers.

Energy Dissipators And Hydraulic Jump

Author: Willi H. HAGER
Publisher: Springer Science & Business Media
ISBN: 9401580480
Size: 29.85 MB
Format: PDF
View: 3346
Download and Read
Stilling basins utili z ing a hydraulic jump for energy dissipation are w i d e l y used in hydraulic engineering . D a Vinci was the first to describe the hydraulic jump, and Bidone conducted classical experiments about 170 years ago . Stilling basins w e r e developed in the thirties with signif- cant design improvements being made during the last sixty years . Although w e l l - a c c e p t e d guidelines for a successful design are presently available, the information for the design of such dissipators is not yet compiled in book form . This book provides state-of-the-art information on hydraulic jumps and associat ed stilling basins . A large numbe r of papers on the to pics are reviewed. T h e present trends of the art of designing a stilli ng basin are discussed and ideas for future research are outlined. Design criteria and recommendat ions are frequently given . However, this should not be considered as a r eady-to -use guideline since the design of an effective stilling basin is much more comple x than following general design steps . The book is divided into two parts. Part 1 on hydraulic jumps is c- prised of chapters 2 to 5. Part 2 consisting of chapters 6 to 14 deals with various hydraulic structures used to dissipate energy. The lists of notation and references are provided in each part separately although the same notation is u sed throughout.

Energy Dissipation In Hydraulic Structures

Author: Hubert Chanson
Publisher: CRC Press
ISBN: 1315680297
Size: 65.84 MB
Format: PDF, ePub, Docs
View: 6923
Download and Read
Recent advances in technology have permitted the construction of large dams, reservoirs and channels. This progress has necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities. Chutes and spillways are designed to spill large water discharges over a hydraulic structure (e.g. dam, weir) without major damage to the structure itself and to its environment. At the hydraulic structure, the flood waters rush as an open channel flow or free-falling jet, and it is essential to dissipate a very signifi cant part of the flow kinetic energy to avoid damage to the hydraulic structure and its surroundings. Energy dissipation may be realised by a wide range of design techniques. A number of modern developments have demonstrated that such energy dissipation may be achieved (a) along the chute, (b) in a downstream energy dissipator, or (c) a combination of both. The magnitude of turbulent energy that must be dissipated in hydraulic structures is enormous even in small rural and urban structures. For a small storm waterway discharging at a 4 m3/s mm high drop, the turbulent kinetic energy flux per unit time is 120 kW! At a large dam, the rate of energy dissipation can exceed tens to hundreds of gigawatts; that is, many times the energy production rate of nuclear power plants. Many engineers have never been exposed to the complexity of energy dissipator designs, to the physical processes taking place and to the structural challenges. Several energy dissipators, spillways and storm waterways failed because of poor engineering design. It is believed that a major issue affecting these failures was the lack of understanding of the basic turbulent dissipation processes and of the interactions between free-surface aeration and flow turbulence. In that context, an authoritative reference book on energy dissipation in hydraulic structures is proposed here. The book contents encompass a range of design techniques including block ramps, stepped spillways, hydraulic jump stilling basins, ski jumps and impact dissipators.

Energy Dissipation In Hydraulic Structures

Author: Hubert Chanson
Publisher: CRC Press
ISBN: 1315680297
Size: 33.59 MB
Format: PDF, ePub
View: 7517
Download and Read
Recent advances in technology have permitted the construction of large dams, reservoirs and channels. This progress has necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities. Chutes and spillways are designed to spill large water discharges over a hydraulic structure (e.g. dam, weir) without major damage to the structure itself and to its environment. At the hydraulic structure, the flood waters rush as an open channel flow or free-falling jet, and it is essential to dissipate a very signifi cant part of the flow kinetic energy to avoid damage to the hydraulic structure and its surroundings. Energy dissipation may be realised by a wide range of design techniques. A number of modern developments have demonstrated that such energy dissipation may be achieved (a) along the chute, (b) in a downstream energy dissipator, or (c) a combination of both. The magnitude of turbulent energy that must be dissipated in hydraulic structures is enormous even in small rural and urban structures. For a small storm waterway discharging at a 4 m3/s mm high drop, the turbulent kinetic energy flux per unit time is 120 kW! At a large dam, the rate of energy dissipation can exceed tens to hundreds of gigawatts; that is, many times the energy production rate of nuclear power plants. Many engineers have never been exposed to the complexity of energy dissipator designs, to the physical processes taking place and to the structural challenges. Several energy dissipators, spillways and storm waterways failed because of poor engineering design. It is believed that a major issue affecting these failures was the lack of understanding of the basic turbulent dissipation processes and of the interactions between free-surface aeration and flow turbulence. In that context, an authoritative reference book on energy dissipation in hydraulic structures is proposed here. The book contents encompass a range of design techniques including block ramps, stepped spillways, hydraulic jump stilling basins, ski jumps and impact dissipators.

Energy Dissipators

Author: W.H. Hager
Publisher: Routledge
ISBN: 1351451332
Size: 53.99 MB
Format: PDF
View: 1302
Download and Read
Energy dissipators are an important element of hydraulic structures as transition between the highly explosive high velocity flow and the sensitive tailwater. This volume examines energy dissipators mainly in connection with dam structures and provides a review of design methods. It includes topics such as hydraulic jump, stilling basins, ski jumps and plunge pools. It also introduces a general account of various methods of dissipation, as well as the governing flow mechanisms.

Hydraulic Design Of Stilling Basins And Energy Dissipators

Author: A. J. Peterka
Publisher:
ISBN: 9781410223418
Size: 11.54 MB
Format: PDF, Kindle
View: 7379
Download and Read
This monograph generalizes the design of stilling basins, energy dissipators of several kinds and associated appurtenances. General design rules are presented so that the necessary dimensions for a particular structure may be easily and quickly determined, and the selected values checked by others without the need for exceptional judgment or extensive previous experience. Proper use of the material in this monograph will eliminate the need for hydraulic model tests on many individual structures, particularly the smaller ones. Designs of structures obtained by following the recommendations presented here will be conservative in that they will provide a desirable factor of safety. However, model studies will still prove beneficial to reduce structure sizes further, to account for nonsymmetrical conditions of approach or getaway, or to evaluate other unusual conditions not described herein. In most instances design rules and procedures are clearly stated in simple terms and limits are fixed in a definite range. However, it is occasionally necessary to set procedures and limits in broader terms, making it necessary that the accompanying text be carefully read. At the end of this monograph is a graphic summary, giving some of the essential material covered, and a nomograph which may be used as a computation aid. These sheets are particularly useful when making preliminary or rough estimates of basin sizes and dimensions.

The Civil Engineering Handbook Second Edition

Author: W.F. Chen
Publisher: CRC Press
ISBN: 1420041215
Size: 41.25 MB
Format: PDF, Mobi
View: 3240
Download and Read
First published in 1995, the award-winning Civil Engineering Handbook soon became known as the field's definitive reference. To retain its standing as a complete, authoritative resource, the editors have incorporated into this edition the many changes in techniques, tools, and materials that over the last seven years have found their way into civil engineering research and practice. The Civil Engineering Handbook, Second Edition is more comprehensive than ever. You'll find new, updated, and expanded coverage in every section. In fact, more than 1/3 of the handbook is new or substantially revised. In particular you'll find increased focus on computing reflecting the rapid advances in computer technology that has revolutionized many aspects of civil engineering. You'll use it as a survey of the field, you'll use it to explore a particular subject, but most of all you'll use The Civil Engineering Handbook to answer the problems, questions, and conundrums you encounter in practice.