Download interacting electrons in nanostructures in pdf or read interacting electrons in nanostructures in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get interacting electrons in nanostructures in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Advanced Physics Of Electron Transport In Semiconductors And Nanostructures

Author: Massimo V. Fischetti
Publisher: Springer
ISBN: 3319011014
Size: 47.84 MB
Format: PDF, ePub
View: 289
Download and Read
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Quantum States And Scattering In Semiconductor Nanostructures

Author: Camille Ndebeka-Bandou
Publisher: World Scientific Publishing Company
ISBN: 1786343045
Size: 46.54 MB
Format: PDF, Kindle
View: 4443
Download and Read
This book is an introduction to quantum states and of their scattering in semiconductor nanostructures. Written with exercises and detailed solutions, it is designed to enable readers to start modelling actual electron states and scattering in nanostructures. It first looks at practical aspects of quantum states and emphasises the variational and perturbation approaches. Following this there is analysis of quasi two-dimensional materials, including discussion of the eigenstates of nanostructures, scattering mechanisms and their numerical results. Focussing on practical applications, this book moves away from standard discourse on theory and provides students of physics, nanotechnology and materials science with the opportunity to fully understand the electronic properties of nanostructures. Contents:Practical Quantum Mechanics:Schrödinger EquationBound and Extended StatesApproximate MethodsLandau Quantisation of Electron Motion in Ideal Semiconductor Bulks and HeterostructuresThe Physics of Heterostructures:Background on HeterostructuresElectrons States in NanostructuresBeyond the Ideal WorldScreening at the Semi-Classical ApproximationResults for Static ScatterersResults for Electron-Phonon InteractionBeyond the Born ApproximationExercises Readership: Students of physics, nanoscience and materials science, professionals working with nanomaterials, and researchers.

Electron Nuclear Spin Dynamics In Semiconductor Nanostructures

Author: M. M. Glazov
Publisher: Oxford University Press
ISBN: 0192534211
Size: 22.75 MB
Format: PDF
View: 2058
Download and Read
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.

Hot Carriers In Semiconductor Nanostructures

Author: Jagdeep Shah
Publisher: Elsevier
ISBN: 0080925707
Size: 61.75 MB
Format: PDF, ePub, Docs
View: 4596
Download and Read
Nonequilibrium hot charge carriers play a crucial role in the physics and technology of semiconductor nanostructure devices. This book, one of the first on the topic, discusses fundamental aspects of hot carriers in quasi-two-dimensional systems and the impact of these carriers on semiconductor devices. The work will provide scientists and device engineers with an authoritative review of the most exciting recent developments in this rapidly moving field. It should be read by all those who wish to learn the fundamentals of contemporary ultra-small, ultra-fast semiconductor devices. Topics covered include Reduced dimensionality and quantum wells Carrier-phonon interactions and hot phonons Femtosecond optical studies of hot carrier Ballistic transport Submicron and resonant tunneling devices

Transport In Nanostructures

Author: David K. Ferry
Publisher: Cambridge University Press
ISBN: 1139480839
Size: 12.60 MB
Format: PDF, Docs
View: 2952
Download and Read
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Nanostructures And Mesoscopic Systems

Author: Wiley Kirk
Publisher: Academic Press
ISBN: 0323145833
Size: 66.79 MB
Format: PDF, ePub, Docs
View: 2296
Download and Read
Nanostructures and Mesoscopic Systems presents the proceedings of the International Symposium held in Santa Fe, New Mexico on May 20-24, 1991. The book discusses nanostructure physics; nanostructures in motion; and advances in nanostructure fabrication. The text also describes ballistic transport and coherence; low-dimensional tunneling; and electron correlation and coulomb blockade. Banostructure arrays and collective effects; the theory and modeling of nanostructures; and mesoscopic systems are also encompassed. The book further tackles the optical properties of nanostructures.

Quantum Materials Lateral Semiconductor Nanostructures Hybrid Systems And Nanocrystals

Author: Detlef Heitmann
Publisher: Springer Science & Business Media
ISBN: 9783642105531
Size: 74.70 MB
Format: PDF, Kindle
View: 5239
Download and Read
Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials".The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems.

Inelastic Light Scattering Of Semiconductor Nanostructures

Author: Christian Schüller
Publisher: Springer Science & Business Media
ISBN: 3540365257
Size: 15.10 MB
Format: PDF, ePub
View: 7238
Download and Read
The field of semiconductor nanostructures is of enormous and still-growing research interest. On one hand, they are already realized in mass products such as high-electron-mobility field-effect transistors and quantum-well lasers. On the other hand, they allow, in specially tailored systems, the investigation of fundamental properties such as many-particle interactions of electrons in reduced dimensions. This book bridges the gap between general semiconductor textbooks and research articles.