Download introduction to contact mechanics mechanical engineering series in pdf or read introduction to contact mechanics mechanical engineering series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get introduction to contact mechanics mechanical engineering series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Introduction To Contact Mechanics

Author: Anthony C. Fischer-Cripps
Publisher: Springer Science & Business Media
ISBN: 0387681884
Size: 17.62 MB
Format: PDF, ePub, Docs
View: 7465
Download and Read
This book deals with the mechanics of solid bodies in contact, a subject intimately connected with such topics as fracture, hardness, and elasticity. Coverage begins with an introduction to the mechanical properties of materials, general fracture mechanics, and the fracture of brittle solids. It then provides a detailed description of indentation stress fields for both elastic and elastic-plastic contact. In addition, the book discusses the formation of Hertzian cone cracks in brittle materials, subsurface damage in ductile materials, and the meaning of hardness. Coverage concludes with an overview of practical methods of indentation testing.

Computational Contact Mechanics

Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 9783211772980
Size: 13.30 MB
Format: PDF, ePub
View: 2651
Download and Read
Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.

Introduction To Computational Contact Mechanics

Author: Alexander Konyukhov
Publisher: John Wiley & Sons
ISBN: 111877065X
Size: 15.82 MB
Format: PDF, ePub, Mobi
View: 3113
Download and Read
Introduction to Computational Contact Mechanics: A Geometrical ApproachAlexander Konyukhov and Ridvan Izi - Karlsruhe Institute of Technology, Germany"Introduction to Computational Contact Mechanics: A Geometrical Approach" covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis.Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thе percussion center Accompanied by a website hosting software "Introduction to Computational Contact Mechanics: A Geometrical Approach" is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.

Fracture Mechanics

Author: Dietmar Gross
Publisher: Springer
ISBN: 3319710907
Size: 36.93 MB
Format: PDF
View: 5155
Download and Read
- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results

Contact Mechanics

Author: K. L. Johnson
Publisher: Cambridge University Press
ISBN: 9780521347969
Size: 77.14 MB
Format: PDF, ePub, Mobi
View: 2204
Download and Read
This treatise is concerned with the stresses and deformation of solid bodies in contact with each other, along curved surfaces which touch initially at a point or along a line. Examples are a railway wheel and rail, or a pair of gear wheel teeth. Professor Johnson first reviews the development of the theory of contact stresses since the problem was originally addressed by H. Hertz in 1882. Next he discusses the influence of friction and the topographical roughness of surfaces, and this is incorporated into the theory of contact mechanics. An important feature is the treatment of bodies which deform plastically or viscoelastically. In addition to stationary contact, an appreciable section of the book is concerned with bodies which are in sliding or rolling contact, or which collide.

Contact Mechanics And Friction

Author: Valentin L. Popov
Publisher: Springer
ISBN: 3662530813
Size: 45.33 MB
Format: PDF
View: 2930
Download and Read
This application-oriented book introduces readers to the associations and relationships between contact mechanics and friction, providing them with a deeper understanding of tribology. It addresses the related phenomena of contacts, adhesion, capillary forces, friction, lubrication, and wear from a consistent point of view. The author presents (1) methods for rough estimates of tribological quantities, (2) simple and general methods for analytical calculations, and (3) the crossover into numerical simulation methods, the goal being to convey a consistent view of tribological processes at various scales of magnitude (from nanotribology to earthquake research). The book also explores the system dynamic aspects of tribological systems, such as squeal and its suppression, as well as other types of instabilities and spatial patterns. It includes problems and worked-out solutions for the respective chapters, giving readers ample opportunity to apply the theory to practical situations and to deepen their understanding of the material discussed. The second edition has been extended with a more detailed exposition of elastohydrodynamic lubrication, an updated chapter on numerical simulation methods in contact mechanics, a new section on fretting in the chapter on wear, as well as numerous new exercises and examples, which help to make the book an excellent reference guide.

Nanoindentation

Author: Anthony C. Fischer-Cripps
Publisher: Springer Science & Business Media
ISBN: 0387224629
Size: 44.57 MB
Format: PDF, ePub, Docs
View: 4712
Download and Read
Mechanical engineering, an engineering discipline borne of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the facing page of this volume. The areas of concentration are: applied mechanics; biomechanics; computational mechanics; dynamic systems and control; energetics; mechanics of materials; processing; thermal science; and tribology.

Numerical Methods In Contact Mechanics

Author: Vladislav A. Yastrebov
Publisher: Wiley-ISTE
ISBN: 9781848215191
Size: 54.51 MB
Format: PDF, ePub, Mobi
View: 3129
Download and Read
Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.

Computational Contact And Impact Mechanics

Author: Tod A. Laursen
Publisher: Springer Science & Business Media
ISBN: 3662048647
Size: 53.12 MB
Format: PDF, ePub, Docs
View: 1238
Download and Read
Many physical systems require the description of mechanical interaction across interfaces if they are to be successfully analyzed. Examples in the engineered world range from the design of prosthetics in biomedical engi neering (e. g. , hip replacements); to characterization of the response and durability of head/disk interfaces in computer magnetic storage devices; to development of pneumatic tires with better handling characteristics and increased longevity in automotive engineering; to description of the adhe sion and/or relative slip between concrete and reinforcing steel in structural engineering. Such mechanical interactions, often called contact/impact in teractions, usually necessitate at minimum the determination of areas over which compressive pressures must act to prevent interpenetration of the mechanical entities involved. Depending on the application, frictional be havior, transient interaction of interfaces with their surroundings (e. g. , in termittent stick/slip), thermo-mechanical coupling, interaction with an in tervening lubricant and/or fluid layer, and damage of the interface (i. e. , wear) may also be featured. When taken together (or even separately!), these features have the effect of making the equations of mechanical evolu tion not only highly nonlinear, but highly nonsmooth as well. While many modern engineering simulation packages possess impressive capabilities in the general area of nonlinear mechanics, it can be contended that methodologies typically utilized for contact interactions are relatively immature in comparison to other components of a nonlinear finite element package, such as large deformation kinematics, inelastic material modeling, nonlinear equation solving, or linear solver technology.

Mechanics Of Elastic Contacts

Author: A. SACKFIELD
Publisher: Elsevier
ISBN: 1483291944
Size: 14.46 MB
Format: PDF, ePub, Mobi
View: 7251
Download and Read
Materials and mechanical engineering researchers studying wear, fretting, elastic indentation testing and other tribological processes frequently need closed-form solutions for various attributes of contacts. These characteristics include contact law, pressure distribution, internal state of stress induced and the influence of friction. Materials and mechanical engineering researchers studying wear, fretting, elastic indentation testing and other tribological processes frequently need closed-form solutions for various attributes of contacts. These characteristics include contact law, pressure distribution, internal state of stress induced and the influence of friction. These solutions, scattered throughout the applied mechanics literature, are difficult to locate, are presented using a range of solution techniques, and express results in a way that is suitable only for experts in the field. `Mechanics of Elastic Contacts' uses a consistent set of recipes for the solution of all relevant problems, presents results in the simplest possible forms, and contains summaries using tabulated data. This reference source will provide a clear guide to elastic contacts for engineering designers, materials scientists and tribologists irrespective of their level of expertise in this important subject.