Download introduction to modeling convection in planets and stars magnetic field density stratification rotation princeton series in astrophysics in pdf or read introduction to modeling convection in planets and stars magnetic field density stratification rotation princeton series in astrophysics in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get introduction to modeling convection in planets and stars magnetic field density stratification rotation princeton series in astrophysics in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Introduction To Modeling Convection In Planets And Stars

Author: Gary A. Glatzmaier
Publisher: Princeton University Press
ISBN: 1400848903
Size: 53.43 MB
Format: PDF
View: 4329
Download and Read
This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accurate numerical methods and more realistic geometries in two and three dimensions. In the third part of the book, Glatzmaier demonstrates how to incorporate more sophisticated physics, including the effects of magnetic field, density stratification, and rotation. Featuring numerous exercises throughout, this is an ideal textbook for students and an essential resource for researchers. Describes how to create codes that simulate the internal dynamics of planets and stars Builds on basic concepts and simple methods Shows how to improve the efficiency and accuracy of the numerical methods Describes more relevant geometries and boundary conditions Demonstrates how to incorporate more sophisticated physics

Mathematical Methods For Geophysics And Space Physics

Author: William I. Newman
Publisher: Princeton University Press
ISBN: 1400882826
Size: 77.66 MB
Format: PDF
View: 1646
Download and Read
Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors

Theory Of Stellar Atmospheres

Author: Ivan Hubeny
Publisher: Princeton University Press
ISBN: 1400852730
Size: 33.24 MB
Format: PDF, ePub, Mobi
View: 3770
Download and Read
This book provides an in-depth and self-contained treatment of the latest advances achieved in quantitative spectroscopic analyses of the observable outer layers of stars and similar objects. Written by two leading researchers in the field, it presents a comprehensive account of both the physical foundations and numerical methods of such analyses. The book is ideal for astronomers who want to acquire deeper insight into the physical foundations of the theory of stellar atmospheres, or who want to learn about modern computational techniques for treating radiative transfer in non-equilibrium situations. It can also serve as a rigorous yet accessible introduction to the discipline for graduate students. Provides a comprehensive, up-to-date account of the field Covers computational methods as well as the underlying physics Serves as an ideal reference book for researchers and a rigorous yet accessible textbook for graduate students An online illustration package is available to professors at press.princeton.edu

Dynamics And Evolution Of Galactic Nuclei

Author: David Merritt
Publisher: Princeton University Press
ISBN: 1400846129
Size: 15.82 MB
Format: PDF, ePub, Docs
View: 4547
Download and Read
Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.

Solar And Stellar Dynamos

Author: Paul Charbonneau
Publisher: Springer
ISBN: 3642320937
Size: 14.58 MB
Format: PDF, ePub, Docs
View: 2983
Download and Read
Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models, global MHD simulations, and fossil fields. Each chapter is accompanied by an annotated bibliography, guiding the readers to the relevant technical literature, which may lead them to carry out their own research in the field of dynamo theory.

Principles Of Planetary Climate

Author: Raymond T. Pierrehumbert
Publisher: Cambridge University Press
ISBN: 1139495062
Size: 35.70 MB
Format: PDF, ePub
View: 6965
Download and Read
This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer and various processes governing the evolution of atmospheric composition. Nearly four hundred problems are supplied to help consolidate the reader's understanding, and to lead the reader towards original research on planetary climate. This textbook is invaluable for advanced undergraduate or beginning graduate students in atmospheric science, Earth and planetary science, astrobiology, and physics. It also provides a superb reference text for researchers in these subjects, and is very suitable for academic researchers trained in physics or chemistry who wish to rapidly gain enough background to participate in the excitement of the new research opportunities opening in planetary climate.

Stellar Pulsations

Author: J.C. Suárez
Publisher: Springer Science & Business Media
ISBN: 3642296297
Size: 63.95 MB
Format: PDF, Kindle
View: 3292
Download and Read
Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

Geophysical Astrophysical Convection

Author: Peter A Fox
Publisher: CRC Press
ISBN: 1482282941
Size: 77.58 MB
Format: PDF
View: 5266
Download and Read
Geophysical and Astrophysical Convection collects important papers from an international group of the world's foremost researchers in geophysical and astrophysical convection to present a concise overview of recent thinking in the field. Topics include: Atmospheric convection, solar and stellar convection, unsteady non-penetrative thermal convection, astrophysical convection and dynamos, dynamics of cumulus entertainment, turbulent convection: helical buoyant convection, transport phenomena, potential vorticity, rotating convective turbulence, and the modeling and simulation various types of convection and turbulence.

Theory Of Accretion Disks

Author: F. Meyer
Publisher: Springer Science & Business Media
ISBN: 9400910371
Size: 28.24 MB
Format: PDF, Docs
View: 4857
Download and Read
With the advent of space observatories and modern developments in ground based astronomy and concurrent progress in the theoretical understanding of these observations it has become clear that accretion of material on to compact objects is an ubiquitous mechanism powering very diverse astrophysical sources ranging in size and luminosity by many orders of magnitude. A problem common to these systems is that the material accreted must in general get rid of its angular momentum and this leads to the formation of an Accretion Disk which allows angular momentum re-distribution and converts potential energy into radiation with an efficiency which can be higher than the nuclear burning yield. These systems range in size from quasars and active galactic nuclei to accretion disks around forming stars and the early solar system and to compact binaries such as cataclysmic variables and low-mass X-ray binaries. Other objects that should be mentioned in this context are 88433, the black hole binary candidates, and possibly gamma-ray burst sources. Observations of these systems have provided important constraints for theoretical accretion disk models on widely differing scales, lumi nosities, mass-transfer rates and physical environments.