## Introduction To Numerical Geodynamic Modelling

Author: Taras Gerya
Publisher: Cambridge University Press
ISBN: 0521887542
Size: 43.94 MB
Format: PDF
View: 3954

This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.

## Computational Methods For Geodynamics

Publisher: Cambridge University Press
ISBN: 1139489356
Size: 23.51 MB
Format: PDF
View: 4074

Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.

## Mantle Convection For Geologists

Author: Geoffrey F. Davies
Publisher: Cambridge University Press
ISBN: 1139496182
Size: 57.29 MB
Format: PDF, Kindle
View: 5514

Mantle convection is the fundamental agent driving many of the geological features observed at the Earth's surface, including plate tectonics and plume volcanism. Yet many Earth scientists have an incomplete understanding of the process. This book describes the physics and fluid dynamics of mantle convection, explaining what it is, how it works, and how to quantify it in simple terms. It assumes no specialist background: mechanisms are explained simply and the required basic physics is fully reviewed and explained with minimal mathematics. The distinctive forms that convection takes in the Earth's mantle are described within the context of tectonic plates and mantle plumes, and implications are explored for geochemistry and tectonic evolution. Common misconceptions and controversies are addressed - providing a straightforward but rigorous explanation of this key process for students and researchers across a variety of geoscience disciplines.

## Geodynamics

Author: Donald L. Turcotte
Publisher: Cambridge University Press
ISBN: 1139915851
Size: 19.79 MB
Format: PDF
View: 4953

Essential reading for any Earth scientist, this classic textbook has been providing advanced undergraduate and graduate students with the fundamentals needed to develop a quantitative understanding of the physical processes of the solid earth for over thirty years. This third edition has two completely new chapters covering numerical modelling and geophysical MATLAB applications, and the text is now supported by a suite of online MATLAB codes that will enable students to grasp the practical aspects of computational modelling. The book has been brought fully up to date with the inclusion of new material on planetary geophysics and other cutting edge topics. Exercises within the text allow students to put the theory into practice as they progress through each chapter and carefully selected further reading sections guide and encourage them to delve deeper into topics of interest. Answers to problems available within the book and also online, for self-testing, complete the textbook package.

## Computational Seismology

Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Size: 61.32 MB
Format: PDF, Mobi
View: 7141

This book is an introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering, and many other fields. The physical problem of elastic wave propagation in 1D serves as a model system with which the various numerical methods are introduced and compared. The theoretical background is presented with substantial graphical material supporting the concepts. The results can be reproduced with the supplementary electronic material provided as python codes embedded in Jupyter notebooks. The book starts with a primer on the physics of elastic wave propagation, and a chapter on the fundamentals of parallel programming, computational grids, mesh generation, and hardware models. The core of the book is the presentation of numerical solutions of the wave equation with six different methods: 1) the finite-difference method; 2) the pseudospectral method (Fourier and Chebyshev); 3) the linear finite-element method; 4) the spectral-element method; 5) the finite-volume method; and 6) the discontinuous Galerkin method. Each chapter contains comprehension questions, theoretical, and programming exercises. The book closes with a discussion of domains of application and criteria for the choice of a specific numerical method, and the presentation of current challenges. Readers are welcome to visit the author's website www.geophysik.lmu.de/Members/igel for more information on his research, projects, publications, and other activities.

## Data Driven Numerical Modelling In Geodynamics Methods And Applications

Publisher: Springer
ISBN: 3319278010
Size: 60.19 MB
Format: PDF
View: 4971

This book describes the methods and numerical approaches for data assimilation in geodynamical models and presents several applications of the described methodology in relevant case studies. The book starts with a brief overview of the basic principles in data-driven geodynamic modelling, inverse problems, and data assimilation methods, which is then followed by methodological chapters on backward advection, variational (or adjoint), and quasi-reversibility methods. The chapters are accompanied by case studies presenting the applicability of the methods for solving geodynamic problems; namely, mantle plume evolution; lithosphere dynamics in and beneath two distinct geological domains – the south-eastern Carpathian Mountains and the Japanese Islands; salt diapirism in sedimentary basins; and volcanic lava flow. Applications of data-driven modelling are of interest to the industry and to experts dealing with geohazards and risk mitigation. Explanation of the sedimentary basin evolution complicated by deformations due to salt tectonics can help in oil and gas exploration; better understanding of the stress-strain evolution in the past and stress localization in the present can provide an insight into large earthquake preparation processes; volcanic lava flow assessments can advise on risk mitigation in the populated areas. The book is an essential tool for advanced courses on data assimilation and numerical modelling in geodynamics.

## Some Problems Of Geodynamics

Author: A. E. H. Love
Publisher: Cambridge University Press
ISBN: 1107536472
Size: 77.58 MB
Format: PDF, ePub, Mobi
View: 4982

Augustus Edward Hough Love (1863-1940) was a British mathematician most well known for his work on elasticity and wave propagation. Originally published in 1911, this book is significant for containing his development of a mathematical model for the surface waves that would become known as Love waves. The text was awarded the Adams Prize for 1911 by the Faculty of Mathematics at the University of Cambridge. Notes are included throughout. This book will be of value to anyone with an interest in geodynamics and the history of science.

## Earthquake Processes Physical Modelling Numerical Simulation And Data Analysis

Author: Mitsuhiro Matsu'ura
Publisher: Springer Science & Business Media
ISBN: 9783764369163
Size: 50.50 MB
Format: PDF, Docs
View: 977

In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.

## Salt Tectonics

Author: Martin P. A. Jackson
Publisher: Cambridge University Press
ISBN: 1316785114
Size: 56.46 MB
Format: PDF, Docs
View: 4095

Salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result. A fascinating branch of geology in itself, salt tectonics is also vitally important to the petroleum industry. Covering the entire scale from the microscopic to the continental, this textbook is an unrivalled consolidation of all topics related to salt tectonics: evaporite deposition and flow, salt structures, salt systems, and practical applications. Coverage of the principles of salt tectonics is supported by more than 600 color illustrations, including 200 seismic images captured by state-of-the-art geophysical techniques and tectonic models from the Applied Geodynamics Laboratory at the University of Texas, Austin. These combine to provide a cohesive and wide-ranging insight into this extremely visual subject. This is the definitive practical handbook for professional geologists and geophysicists in the petroleum industry, an invaluable textbook for graduate students, and a reference textbook for researchers in various geoscience fields.

## Analogue And Numerical Modelling Of Crustal Scale Processes

Author: Susanne Janita Henriët Buiter
Publisher: Geological Society of London
ISBN: 9781862391918
Size: 39.14 MB
Format: PDF
View: 2434

The crust of the Earth records the deformational processes of the inner Earth and the influence of the overlying atmosphere. The state of the Earth's crust at any time is therefore the result of internal and external processes, which occur on different time and spatial scales. In recent years important steps forward in the understanding of such complex processes have been made by integrating theory and observations with experimental and computer models. This volume presents state-of-the-art analogue and numerical models of processes that alter the Earth's crust. It shows the application of models in a broad range of geological problems with careful documentation of the modelling approach used. This volume contains contributions on analogue and numerical sandbox models, models of orogenic processes, models of sedimentary basins, models of surface processes and deformation, and models of faults and fluid flow.