Download introduction to randomized controlled clinical trials second edition chapman hall crc texts in statistical science in pdf or read introduction to randomized controlled clinical trials second edition chapman hall crc texts in statistical science in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get introduction to randomized controlled clinical trials second edition chapman hall crc texts in statistical science in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Introduction To Randomized Controlled Clinical Trials Second Edition

Author: J. N. S. Matthews
Publisher: St. Martin's Press
ISBN: 9781584886242
Size: 36.33 MB
Format: PDF, ePub, Docs
View: 3612
Download and Read
Evidence from randomized controlled clinical trials is widely accepted as the only sound basis for assessing the efficacy of new medical treatments. Statistical methods play a key role in all stages of these trials, including their justification, design, and analysis. This second edition of Introduction to Randomized Controlled Clinical Trials provides a concise presentation of the principles applied in this area. It details the concepts behind randomization and methods for designing and analyzing trials and also includes information on meta-analysis and specialized designs, such as cross-over trials, cluster-randomized designs, and equivalence studies. This latest edition features new and revised references, examples, exercises, and a new chapter dedicated to binary outcomes and survival analysis. It also presents numerous examples taken from the medical literature, contains exercises at the end of each chapter, and offers solutions in an appendix. The author uses Minitab and R software throughout the text for implementing the methods that are presented. Comprehensive and accessible, Introduction to Randomized Controlled Clinical Trials is well-suited for those familiar with elementary statistical ideas and methods who want to further their knowledge of the subject.

Introduction To Randomized Controlled Clinical Trials Second Edition

Author: John N.S. Matthews
Publisher: CRC Press
ISBN: 1420011308
Size: 72.91 MB
Format: PDF, ePub, Docs
View: 1850
Download and Read
Evidence from randomized controlled clinical trials is widely accepted as the only sound basis for assessing the efficacy of new medical treatments. Statistical methods play a key role in all stages of these trials, including their justification, design, and analysis. This second edition of Introduction to Randomized Controlled Clinical Trials provides a concise presentation of the principles applied in this area. It details the concepts behind randomization and methods for designing and analyzing trials and also includes information on meta-analysis and specialized designs, such as cross-over trials, cluster-randomized designs, and equivalence studies. This latest edition features new and revised references, examples, exercises, and a new chapter dedicated to binary outcomes and survival analysis. It also presents numerous examples taken from the medical literature, contains exercises at the end of each chapter, and offers solutions in an appendix. The author uses Minitab and R software throughout the text for implementing the methods that are presented. Comprehensive and accessible, Introduction to Randomized Controlled Clinical Trials is well-suited for those familiar with elementary statistical ideas and methods who want to further their knowledge of the subject.

Applied Stochastic Modelling Second Edition

Author: Byron J.T. Morgan
Publisher: CRC Press
ISBN: 1420011650
Size: 30.22 MB
Format: PDF, ePub, Docs
View: 788
Download and Read
Highlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB® and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data.

Randomization Bootstrap And Monte Carlo Methods In Biology Third Edition

Author: Bryan F.J. Manly
Publisher: CRC Press
ISBN: 9781584885412
Size: 21.45 MB
Format: PDF, Mobi
View: 108
Download and Read
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.

Introduction To The Theory Of Statistical Inference

Author: Hannelore Liero
Publisher: CRC Press
ISBN: 1466503203
Size: 59.90 MB
Format: PDF, ePub, Docs
View: 2856
Download and Read
Based on the authors’ lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Suitable for a second-semester undergraduate course on statistical inference, the book offers proofs to support the mathematics. It illustrates core concepts using cartoons and provides solutions to all examples and problems. Highlights Basic notations and ideas of statistical inference are explained in a mathematically rigorous, but understandable, form Classroom-tested and designed for students of mathematical statistics Examples, applications of the general theory to special cases, exercises, and figures provide a deeper insight into the material Solutions provided for problems formulated at the end of each chapter Combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models Theoretical, difficult, or frequently misunderstood problems are marked The book is aimed at advanced undergraduate students, graduate students in mathematics and statistics, and theoretically-interested students from other disciplines. Results are presented as theorems and corollaries. All theorems are proven and important statements are formulated as guidelines in prose. With its multipronged and student-tested approach, this book is an excellent introduction to the theory of statistical inference.

Introduction To General And Generalized Linear Models

Author: Henrik Madsen
Publisher: CRC Press
ISBN: 1439891141
Size: 58.88 MB
Format: PDF, Mobi
View: 7379
Download and Read
Bridging the gap between theory and practice for modern statistical model building, Introduction to General and Generalized Linear Models presents likelihood-based techniques for statistical modelling using various types of data. Implementations using R are provided throughout the text, although other software packages are also discussed. Numerous examples show how the problems are solved with R. After describing the necessary likelihood theory, the book covers both general and generalized linear models using the same likelihood-based methods. It presents the corresponding/parallel results for the general linear models first, since they are easier to understand and often more well known. The authors then explore random effects and mixed effects in a Gaussian context. They also introduce non-Gaussian hierarchical models that are members of the exponential family of distributions. Each chapter contains examples and guidelines for solving the problems via R. Providing a flexible framework for data analysis and model building, this text focuses on the statistical methods and models that can help predict the expected value of an outcome, dependent, or response variable. It offers a sound introduction to general and generalized linear models using the popular and powerful likelihood techniques. Ancillary materials are available at www.imm.dtu.dk/~hm/GLM

Introduction To Probability With R

Author: Kenneth Baclawski
Publisher: Chapman and Hall/CRC
ISBN: 9781420065213
Size: 35.97 MB
Format: PDF, Kindle
View: 7638
Download and Read
Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

A Primer On Linear Models

Author: John F. Monahan
Publisher: Chapman and Hall/CRC
ISBN: 9781420062014
Size: 14.99 MB
Format: PDF, ePub, Docs
View: 740
Download and Read
A Primer on Linear Models presents a unified, thorough, and rigorous development of the theory behind the statistical methodology of regression and analysis of variance (ANOVA). It seamlessly incorporates these concepts using non-full-rank design matrices and emphasizes the exact, finite sample theory supporting common statistical methods. With coverage steadily progressing in complexity, the text first provides examples of the general linear model, including multiple regression models, one-way ANOVA, mixed-effects models, and time series models. It then introduces the basic algebra and geometry of the linear least squares problem, before delving into estimability and the Gauss–Markov model. After presenting the statistical tools of hypothesis tests and confidence intervals, the author analyzes mixed models, such as two-way mixed ANOVA, and the multivariate linear model. The appendices review linear algebra fundamentals and results as well as Lagrange multipliers. This book enables complete comprehension of the material by taking a general, unifying approach to the theory, fundamentals, and exact results of linear models.

Problem Solving

Author: Chris Chatfield
Publisher: CRC Press
ISBN: 9780412606304
Size: 52.15 MB
Format: PDF, ePub, Docs
View: 4934
Download and Read
This book illuminates the complex process of problem solving, including formulating the problem, collecting and analyzing data, and presenting the conclusions.