Download knowledge discovery from data streams chapman hall crc data mining and knowledge discovery series in pdf or read knowledge discovery from data streams chapman hall crc data mining and knowledge discovery series in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get knowledge discovery from data streams chapman hall crc data mining and knowledge discovery series in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Knowledge Discovery From Data Streams

Author: Joao Gama
Publisher: CRC Press
ISBN: 1439826129
Size: 28.71 MB
Format: PDF, Docs
View: 4192
Download and Read
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams. The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks, and customer click streams. It also addresses several challenges of data mining in the future, when stream mining will be at the core of many applications. These challenges involve designing useful and efficient data mining solutions applicable to real-world problems. In the appendix, the author includes examples of publicly available software and online data sets. This practical, up-to-date book focuses on the new requirements of the next generation of data mining. Although the concepts presented in the text are mainly about data streams, they also are valid for different areas of machine learning and data mining.

Mining Software Specifications

Author: David Lo
Publisher: CRC Press
ISBN: 1439806276
Size: 20.90 MB
Format: PDF, ePub
View: 2822
Download and Read
An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns. In the first set of chapters, the book introduces a number of studies on mining finite state machines that employ techniques, such as grammar inference, partial order mining, source code model checking, abstract interpretation, and more. The remaining chapters present research on mining temporal rules/patterns, covering techniques that include path-aware static program analyses, lightweight rule/pattern mining, statistical analysis, and other interesting approaches. Throughout the book, the authors discuss how to employ dynamic analysis, static analysis, and combinations of both to mine software specifications. According to the US National Institute of Standards and Technology in 2002, software bugs have cost the US economy 59.5 billion dollars a year. This volume shows how specification mining can help find bugs and improve program understanding, thereby reducing unnecessary financial losses. The book encourages the industry adoption of specification mining techniques and the assimilation of these techniques in standard integrated development environments (IDEs).

Data Clustering

Author: Charu C. Aggarwal
Publisher: CRC Press
ISBN: 1498785778
Size: 59.81 MB
Format: PDF, Docs
View: 1385
Download and Read
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Machine Learning And Knowledge Discovery For Engineering Systems Health Management

Author: Ashok N. Srivastava
Publisher: CRC Press
ISBN: 1439841799
Size: 37.45 MB
Format: PDF, ePub, Docs
View: 131
Download and Read
Machine Learning and Knowledge Discovery for Engineering Systems Health Management presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. With contributions from many top authorities on the subject, this volume is the first to bring together the two areas of machine learning and systems health management. Divided into three parts, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management. The first part of the text describes data-driven methods for anomaly detection, diagnosis, and prognosis of massive data streams and associated performance metrics. It also illustrates the analysis of text reports using novel machine learning approaches that help detect and discriminate between failure modes. The second part focuses on physics-based methods for diagnostics and prognostics, exploring how these methods adapt to observed data. It covers physics-based, data-driven, and hybrid approaches to studying damage propagation and prognostics in composite materials and solid rocket motors. The third part discusses the use of machine learning and physics-based approaches in distributed data centers, aircraft engines, and embedded real-time software systems. Reflecting the interdisciplinary nature of the field, this book shows how various machine learning and knowledge discovery techniques are used in the analysis of complex engineering systems. It emphasizes the importance of these techniques in managing the intricate interactions within and between the systems to maintain a high degree of reliability.

Temporal Data Mining

Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 9781420089776
Size: 38.99 MB
Format: PDF, Docs
View: 1735
Download and Read
Temporal data mining deals with the harvesting of useful information from temporal data. New initiatives in health care and business organizations have increased the importance of temporal information in data today. From basic data mining concepts to state-of-the-art advances, Temporal Data Mining covers the theory of this subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references. In the appendices, the author explains how data mining fits the overall goal of an organization and how these data can be interpreted for the purpose of characterizing a population. She also provides programs written in the Java language that implement some of the algorithms presented in the first chapter. Check out the author's blog at http://theophanomitsa.wordpress.com/

Computational Business Analytics

Author: Subrata Das
Publisher: CRC Press
ISBN: 1439890730
Size: 54.38 MB
Format: PDF, ePub, Docs
View: 374
Download and Read
Learn How to Properly Use the Latest Analytics Approaches in Your Organization Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies. The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text: Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks Embeds decision trees within influence diagrams Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns.

Data Classification

Author: Charu C. Aggarwal
Publisher: CRC Press
ISBN: 1498760589
Size: 37.93 MB
Format: PDF, ePub, Docs
View: 1539
Download and Read
Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

Data Mining With R

Author: Luis Torgo
Publisher: CRC Press
ISBN: 1315399091
Size: 22.88 MB
Format: PDF, ePub, Mobi
View: 4213
Download and Read
Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Next Generation Of Data Mining

Author: Hillol Kargupta
Publisher: CRC Press
ISBN: 9781420085877
Size: 24.37 MB
Format: PDF
View: 7347
Download and Read
Drawn from the US National Science Foundation’s Symposium on Next Generation of Data Mining and Cyber-Enabled Discovery for Innovation (NGDM 07), Next Generation of Data Mining explores emerging technologies and applications in data mining as well as potential challenges faced by the field. Gathering perspectives from top experts across different disciplines, the book debates upcoming challenges and outlines computational methods. The contributors look at how ecology, astronomy, social science, medicine, finance, and more can benefit from the next generation of data mining techniques. They examine the algorithms, middleware, infrastructure, and privacy policies associated with ubiquitous, distributed, and high performance data mining. They also discuss the impact of new technologies, such as the semantic web, on data mining and provide recommendations for privacy-preserving mechanisms. The dramatic increase in the availability of massive, complex data from various sources is creating computing, storage, communication, and human-computer interaction challenges for data mining. Providing a framework to better understand these fundamental issues, this volume surveys promising approaches to data mining problems that span an array of disciplines.

Healthcare Data Analytics

Author: Chandan K. Reddy
Publisher: CRC Press
ISBN: 148223212X
Size: 43.71 MB
Format: PDF, ePub, Mobi
View: 2516
Download and Read
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available to solve healthcare problems. The book details novel techniques for acquiring, handling, retrieving, and making best use of healthcare data. It analyzes recent developments in healthcare computing and discusses emerging technologies that can help improve the health and well-being of patients. Written by prominent researchers and experts working in the healthcare domain, the book sheds light on many of the computational challenges in the field of medical informatics. Each chapter in the book is structured as a "survey-style" article discussing the prominent research issues and the advances made on that research topic. The book is divided into three major categories: Healthcare Data Sources and Basic Analytics - details the various healthcare data sources and analytical techniques used in the processing and analysis of such data Advanced Data Analytics for Healthcare - covers advanced analytical methods, including clinical prediction models, temporal pattern mining methods, and visual analytics Applications and Practical Systems for Healthcare - covers the applications of data analytics to pervasive healthcare, fraud detection, and drug discovery along with systems for medical imaging and decision support Computer scientists are usually not trained in domain-specific medical concepts, whereas medical practitioners and researchers have limited exposure to the data analytics area. The contents of this book will help to bring together these diverse communities by carefully and comprehensively discussing the most relevant contributions from each domain.