Download long wave polar modes in semiconductor heterostructures in pdf or read long wave polar modes in semiconductor heterostructures in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get long wave polar modes in semiconductor heterostructures in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Long Wave Polar Modes In Semiconductor Heterostructures

Author: C. Trallero-Giner
Publisher: Elsevier
ISBN: 9780080535609
Size: 73.27 MB
Format: PDF, ePub, Docs
View: 1867
Download and Read
Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentation of a simple phenomenological model and theoretical tools to work with and also to young theoreticians by providing discussion of basic issues and the basis of advanced theoretical formulations. The book also provides a brief respite on the physics of piezoelectric waves as a coupling to polar optical modes.

Physics Of Quantum Rings

Author: Vladimir M. Fomin
Publisher: Springer
ISBN: 3319951599
Size: 38.42 MB
Format: PDF, Kindle
View: 2530
Download and Read
This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.

Phonons In Semiconductor Nanostructures

Author: J.P. Leburton
Publisher: Springer Science & Business Media
ISBN: 9401116830
Size: 63.93 MB
Format: PDF, Kindle
View: 6589
Download and Read
In the last ten years, the physics and technology of low dimensional structures has experienced a tremendous development. Quantum structures with vertical and lateral confinements are now routinely fabricated with feature sizes below 100 run. While quantization of the electron states in mesoscopic systems has been the subject of intense investigation, the effect of confinement on lattice vibrations and its influence on the electron-phonon interaction and energy dissipation in nanostructures received atten tion only recently. This NATO Advanced Research Workshop on Phonons in Sem iconductor Nanostructures was a forum for discussion on the latest developments in the physics of phonons and their impact on the electronic properties of low-dimensional structures. Our goal was to bring together specialists in lattice dynamics and nanos tructure physics to assess the increasing importance of phonon effects on the physical properties of one-(lD) and zero-dimensional (OD) structures. The Workshop addressed various issues related to phonon physics in III-V, II-VI and IV semiconductor nanostructures. The following topics were successively covered: Models for confined phonons in semiconductor nanostructures, latest experimental observations of confined phonons and electron-phonon interaction in two-dimensional systems, elementary excitations in nanostructures, phonons and optical processes in reduced dimensionality systems, phonon limited transport phenomena, hot electron effects in quasi - ID structures, carrier relaxation and phonon bottleneck in quantum dots.

Hot Electrons In Semiconductors

Author: N. Balkan
Publisher: Oxford University Press on Demand
ISBN: 9780198500582
Size: 19.97 MB
Format: PDF, Mobi
View: 2902
Download and Read
Since the arrival of the transistor in 1947, research in hot electrons, like any field in semiconductor research, has grown at a stunning rate. From a physicist's point of view the understanding of hot electrons and their interactions with the lattice has always been a challenging problem of condensed matter physics. Recently, with the advent of novel fabrication techniques such as electron beam or plasma etching and the advanced growth techniques such as the molecular beam epitaxy (MBE)and metallo-organic chemical vapour deposition (MOCVD), it has become possible to fabricate semiconductor devices with sub-micron dimensions where the electrons are confined to two (quantum well), one (quantum wire) or zero (quantum dot) dimensions. In devices of such dimensions a few volts applied to the device result in the setting up of very high electric fields, hence a substantial heating of electrons. Thus electronic transport in the device becomes non- linear and can no longer be described using the simple equations of Ohm's law. The understanding of the operations of such devices, and the realisations of more advanced ones make it necessary to understand the dynamics of hot electrons. There is an obvious lack of good reference books on hot electrons in semiconductors. The few that exist either cover a very narrow field or are becoming quite outdated. This book is therefore written with the aim of filling the vacuum in an area where there is much demand for a comprehensive reference book. The book is intended for both established researchers and graduate students, and gives a complete account of the historical development of the subject, together with current research interests and future trends. The contributions are written by leading scientists in the field. They cover the physics of hot electrons in bulk and low dimensional device technology. The material is organised into subject area that can be classified broadly into five groups: (1)introduction and overview, (2)hot electron phonon interactions and the ultra-fast phenomena in bulk and two dimensional structures, (3)hot electrons in both long and short quantum wires and quantum dots, (4) hot electron tunnelling and hot electron transport in superlattices, and (5) novel devices based on hot electron transport. The chapters are grouped according to subject matter as far as possible. However, although there is much overlap of ideas and concepts, each chapter is essentially independent of the others.

Quantum Heterostructures

Author: Vladimir Vasilʹevich Mitin
Publisher: Cambridge University Press
ISBN: 9780521636353
Size: 39.90 MB
Format: PDF, ePub, Docs
View: 182
Download and Read
Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.