Download magnetocumulative generators shock wave and high pressure phenomena in pdf or read magnetocumulative generators shock wave and high pressure phenomena in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get magnetocumulative generators shock wave and high pressure phenomena in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Magnetocumulative Generators

Author: Larry L. Altgilbers
Publisher: Springer Science & Business Media
ISBN: 1461212324
Size: 67.72 MB
Format: PDF, ePub, Mobi
View: 1845
Download and Read
A discussion of explosive pulsed power systems and their applications, this book consists of 7 chapters. The first five describe the basic physics of these sources and their ancillary equipment, based on a manual for training engineers in Russia. Chapter 6 is a description of codes and methodologies used at Loughborough University in the UK to build flux compressors, while Chapter 7 covers two specific applications: high power lasers and high power microwave sources. The book introduces all types of explosive power sources and their ancillary equipment, the procedures required to build them, and specific applications.

Shock Wave Reflection Phenomena

Author: Gabi Ben-Dor
Publisher: Springer Science & Business Media
ISBN: 3540713824
Size: 71.93 MB
Format: PDF, ePub
View: 1989
Download and Read
This book is a comprehensive state-of-the-knowledge summation of shock wave reflection phenomena from a phenomenological point of view. It includes a thorough introduction to oblique shock wave reflections, dealing with both regular and Mach types. It also covers in detail the corresponding two- and three-shock theories. The book moves on to describe reflection phenomena in a variety of flow types, as well as providing the resolution of the Neumann paradox.

Fundamentals Of Shock Wave Propagation In Solids

Author: Lee Davison
Publisher: Springer Science & Business Media
ISBN: 3540745688
Size: 55.54 MB
Format: PDF, ePub, Mobi
View: 5546
Download and Read
My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Static Compression Of Energetic Materials

Author: Suhithi M. Peiris
Publisher: Springer Science & Business Media
ISBN: 3540681515
Size: 22.86 MB
Format: PDF
View: 1431
Download and Read
Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.

Shock Wave Phenomena And The Properties Of Condensed Matter

Author: Gennady I. Kanel
Publisher: Springer Science & Business Media
ISBN: 1475742827
Size: 40.22 MB
Format: PDF, Kindle
View: 1965
Download and Read
One of the main goals of investigations of shock-wave phenomena in condensed matter is to develop methods for predicting effects of explosions, high-velocity collisions, and other kinds of intense dynamic loading of materials and structures. Based on the results of international research conducted over the past 30 years, this book is addressed not only to experts in shock-wave physics, but also to interested representatives from adjacent fields of activity and to students who seek an introduction to the current issues.

Test Methods For Explosives

Author: Muhamed Suceska
Publisher: Springer Science & Business Media
ISBN: 1461207975
Size: 65.23 MB
Format: PDF, ePub
View: 6122
Download and Read
It seems that there is no book that treats the measurement of the physical pa rameters of explosives as its only subject, although limited information is avail able in a number of books. Therefore, I have tried to bridge this gap in the lit erature with this book. A large number of various physical parameters have to be determined ex perimentally in order to test or characterise an explosive. Various physical principles have been applied for such measurements. Accordingly, a large number of different experimental methods exist, as well as various testing appa ratuses and procedures. On the other hand, great progress has been made recently in the study of detonation phenomena. New measuring techniques can assess extremely short processes to below nanoseconds scale. They make it possible to determine im portant parameters in detonation physics. I have made a great attempt to cover the available literature data on the subject. Because it would be a highly demanding task to include in a single volume all the methods that are in use by various testing agencies, I have tried to give primarily the principles for determination of individual physical pa rameters of explosives by different measuring methods as well as data treatment procedures.

Blast Waves

Author: Charles E. Needham
Publisher: Springer Science & Business Media
ISBN: 9783642052880
Size: 73.41 MB
Format: PDF
View: 3878
Download and Read
As an editor of the international scienti?c journal Shock Waves, I was asked whether I might document some of my experience and knowledge in the ?eld of blast waves. I began an outline for a book on the basis of a short course that I had been teaching for several years. I added to the outline, ?lling in details and including recent devel- ments, especially in the subjects of height of burst curves and nonideal explosives. At a recent meeting of the International Symposium on the Interaction of Shock Waves, I was asked to write the book I had said I was working on. As a senior advisor to a group working on computational ?uid dynamics, I found that I was repeating many useful rules and conservation laws as new people came into the group. The transfer of knowledge was hit and miss as questions arose during the normal work day. Although I had developed a short course on blast waves, it was not practical to teach the full course every time a new member was added to the group. This was suf?cient incentive for me to undertake the writing of this book. I cut my work schedule to part time for two years while writing the book. This allowed me to remain heavily involved in ongoing and leading edge work in hydrodynamics while documenting this somewhat historical perspective on blast waves.

Material Properties Under Intensive Dynamic Loading

Author: Mikhail V. Zhernokletov
Publisher: Springer Science & Business Media
ISBN: 3540368450
Size: 63.77 MB
Format: PDF
View: 6443
Download and Read
Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

Detonation Of Condensed Explosives

Author: Roger Cheret
Publisher: Springer Science & Business Media
ISBN: 1461392845
Size: 39.11 MB
Format: PDF, Kindle
View: 6455
Download and Read
This work marks a stage in the evolution of a scientific and technical field which has been developed by the Commissariat a l'Energie Atomique (CEA) over several decades. Many members of the staff of the CEA have won re nown in this field, and their work has brought it to the high degree of excel lence for which it is internationally recognized today. These scientists had to consider every aspect of the field, as it concerned: modeling, which has recourse to fluid thermodynamics, molecular phys ics, and chemistry; numerical evaluation, which relies on mathematical analysis and data processing; and experiments in the firing area, which require specific stress generators and instrumentation. Whilst this book is a testament to the activity and success of staff of the CEA, it also reviews a number ofthe advances made in the discipline. How ever, it is not intended to be an exhaustive account of those advances; it is assumed that the reader can, if desired, consult the standard monographs, and more recent, more specialized works (notably W.C. Davis and W. Fickett, and C.L. Mader). The history of the discipline is interesting in itself, and also as an illustra tion of the causes which lead to progress in a coherent body of scientific work. I should like to make some comments on this progress, of which there is a fascinating summary in the introduction, and which will figure largely throughout the work.