Download manifolds and differential geometry in pdf or read manifolds and differential geometry in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get manifolds and differential geometry in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Manifolds And Differential Geometry

Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Size: 29.59 MB
Format: PDF, ePub, Mobi
View: 2531
Download and Read
Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

Differential Geometry Of Manifolds

Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120346505
Size: 23.63 MB
Format: PDF, Docs
View: 6135
Download and Read
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, while trying to answer them using calculus techniques. The geometry of differentiable manifolds with structures is one of the most important branches of modern differential geometry. This well-written book discusses the theory of differential and Riemannian manifolds to help students understand the basic structures and consequent developments. While introducing concepts such as bundles, exterior algebra and calculus, Lie group and its algebra and calculus, Riemannian geometry, submanifolds and hypersurfaces, almost complex manifolds, etc., enough care has been taken to provide necessary details which enable the reader to grasp them easily. The material of this book has been successfully tried in classroom teaching. The book is designed for the postgraduate students of Mathematics. It will also be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and cosmology, and other applied areas. KEY FEATURES  Provides basic concepts in an easy-to-understand style.  Presents the subject in a natural way.  Follows a coordinate-free approach.  Includes a large number of solved examples and illuminating illustrations.  Gives notes and remarks at appropriate places.

Differential Geometry Of Manifolds

Author: Stephen T. Lovett
Publisher: CRC Press
ISBN: 1439865469
Size: 67.30 MB
Format: PDF, ePub, Mobi
View: 2451
Download and Read
From the coauthor of Differential Geometry of Curves and Surfaces, this companion book presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together the classical and modern formulations. The three appendices provide background information on point set topology, calculus of variations, and multilinear algebra—topics that may not have been covered in the prerequisite courses of multivariable calculus and linear algebra. Differential Geometry of Manifolds takes a practical approach, containing extensive exercises and focusing on applications of differential geometry in physics, including the Hamiltonian formulation of dynamics (with a view toward symplectic manifolds), the tensorial formulation of electromagnetism, some string theory, and some fundamental concepts in general relativity.

Differential Geometry

Author: Wolfgang Kühnel
Publisher: American Mathematical Soc.
ISBN: 9780821839881
Size: 61.67 MB
Format: PDF, ePub
View: 596
Download and Read
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

Fundamentals Of Differential Geometry

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461205417
Size: 11.95 MB
Format: PDF, Mobi
View: 4632
Download and Read
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

A Course In Differential Geometry

Author: Thierry Aubin
Publisher: American Mathematical Soc.
ISBN: 9780821872147
Size: 26.61 MB
Format: PDF, ePub, Mobi
View: 6929
Download and Read
This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.


Author: Wolfgang Kühnel
Publisher: Springer-Verlag
ISBN: 3834896551
Size: 15.73 MB
Format: PDF, ePub, Mobi
View: 854
Download and Read
Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Differential Geometry And Topology

Author: R Caddeo
Publisher: World Scientific
ISBN: 9814553085
Size: 58.55 MB
Format: PDF
View: 153
Download and Read
This volume contains the courses and lectures given during the workshop on Differential Geometry and Topology held at Alghero, Italy, in June 1992. The main goal of this meeting was to offer an introduction in attractive areas of current research and to discuss some recent important achievements in both the fields. This is reflected in the present book which contains some introductory texts together with more specialized contributions. The topics covered in this volume include circle and sphere packings, 3-manifolds invariants and combinatorial presentations of manifolds, soliton theory and its applications in differential geometry, G-manifolds of low cohomogeneity, exotic differentiable structures on R4, conformal deformation of Riemannian manifolds and Riemannian geometry of algebraic manifolds. Contents:Asystatic G-Manifolds (A Alekseevsky & D Alekseevsky)Les Paquets de Cercles (M Berger)Smooth Structures on Euclidean Spaces (S Demichelis)Surface Theory, Harmonic Maps and Commuting Hamiltonian Flows (D Ferus)Metric Invariants of Kähler Manifolds (M Gromov)On the Sphere Packing Problem and the Proof of Kepler's Conjecture (W Y Hsiang)A 3-Gem Approach to Turaev-Viro Invariants (S L S Lins)Cohomology Operations and Modular Invariant Theory (L Lomonaco)Scalar Curvature and Conformal Deformation of Riemannian Manifolds (A Ratto)Lectures on Combinatorial Presentations of Manifolds (O Viro) Readership: Mathematicians. keywords:

An Introduction To Differential Manifolds

Author: Jacques Lafontaine
Publisher: Springer
ISBN: 3319207350
Size: 39.42 MB
Format: PDF, Mobi
View: 2878
Download and Read
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.