Download many body physics topology and geometry in pdf or read many body physics topology and geometry in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get many body physics topology and geometry in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.

Many Body Physics Topology And Geometry

Author: Siddhartha Sen
Publisher: World Scientific
ISBN: 981467818X
Size: 12.76 MB
Format: PDF, Kindle
View: 6576
Download and Read
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to many-body theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a many-body problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed. The mathematical idea of self-adjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene. The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described. Contents:OverviewMany-Body TheoryTopology and GeometryBoundary Conditions and Self-Adjoint ExtensionsElectronic Properties of Graphene Readership: Graduate students and researchers in condensed matter physics and mathematical physics. Key Features:Topics are of current interest, e.g. graphene, topological insulators, Majorana fermionsIs self-contained and provides all the background material necessary to understand the physical or mathematical concepts discussedPractical ways of using topology, self-adjoint extensions as well as ways of making qualitative estimates in physics are explained and then illustrated by examplesKeywords:Condensed Matter Physics;Topology;Differential Geometry;Many-Body Problem;Graphene;Self-Adjoint Extensions;K-Theory;Quasiparticles;Superconductivity;Superfluidity;Topological Insulator;Mathematical Physics

Geometry Topology And Physics Second Edition

Author: Mikio Nakahara
Publisher: CRC Press
ISBN: 9780750306065
Size: 41.79 MB
Format: PDF, ePub, Mobi
View: 1423
Download and Read
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Topology And Geometry For Physicists

Author: Charles Nash
Publisher: Courier Corporation
ISBN: 0486318362
Size: 25.59 MB
Format: PDF, ePub, Mobi
View: 1456
Download and Read
Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

Geometry And Physics

Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 9783642005411
Size: 13.90 MB
Format: PDF, ePub, Mobi
View: 3117
Download and Read
"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

Geometrical Methods Of Mathematical Physics

Author: Bernard F. Schutz
Publisher: Cambridge University Press
ISBN: 1107268141
Size: 47.98 MB
Format: PDF
View: 4620
Download and Read
In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Quantum Phase Transitions In Transverse Field Models

Author: Amit Dutta
Publisher: Cambridge University Press
ISBN: 1107068797
Size: 80.68 MB
Format: PDF, Mobi
View: 4151
Download and Read
The transverse field Ising and XY models (the simplest quantum spin models) provide the organising principle for the rich variety of interconnected subjects which are covered in this book. From a generic introduction to in-depth discussions of the subtleties of the transverse field Ising and related models, it includes the essentials of quantum dynamics and quantum information. A wide range of relevant topics has also been provided: quantum phase transitions, various measures of quantum information, the effects of disorder and frustration, quenching dynamics and the Kibble-Zurek scaling relation, the Kitaev model, topological phases of quantum systems, and bosonisation. In addition, it also discusses the experimental studies of transverse field models (including the first experimental realisation of quantum annealing) and the recent realisation of the transverse field Ising model using tunable Josephson junctions. Further, it points to the obstacles still remaining to develop a successful quantum computer.

Topological Insulators

Author: Shun-Qing Shen
Publisher: Springer Science & Business Media
ISBN: 364232858X
Size: 63.38 MB
Format: PDF, ePub, Mobi
View: 1237
Download and Read
Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Condensed Matter Field Theory

Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Size: 62.30 MB
Format: PDF
View: 7575
Download and Read
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Differential Topology And Quantum Field Theory

Author: Charles Nash
Publisher: Elsevier
ISBN: 9780125140768
Size: 67.85 MB
Format: PDF, ePub
View: 5876
Download and Read
The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

The Geometry Of Physics

Author: Theodore Frankel
Publisher: Cambridge University Press
ISBN: 1139505610
Size: 48.91 MB
Format: PDF, ePub, Mobi
View: 4970
Download and Read
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.